積分練習9

349.

[egin{gathered}  int {{{	ext{e}}^{sqrt[3]{x}}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt[3]{x},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{3{x^{frac{2}{3}}}}},{x^{frac{2}{3}}} = {u^2}, hfill \   = 3int {{u^2}{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  hfill \  w = {u^2},g = {{	ext{e}}^u}, hfill \  w = {	ext{2u}},g = {{	ext{e}}^u}, hfill \   = 3{u^2}{{	ext{e}}^u} - 6int {u{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  hfill \  w = u,g = {{	ext{e}}^u}, hfill \  w = {	ext{1}},g = {{	ext{e}}^u}, hfill \   = 3{u^2}{{	ext{e}}^u} - 6(u{{	ext{e}}^u} - int {{{	ext{e}}^u}{kern 1pt} {	ext{d}}u} ) hfill \   = 3{u^2}{{	ext{e}}^u} - 6u{{	ext{e}}^u} + 6int {{{	ext{e}}^u}{kern 1pt} {	ext{d}}u}  hfill \ end{gathered} ]

[egin{gathered}   = 3{u^2}{{	ext{e}}^u} - 6u{{	ext{e}}^u} + 6{{	ext{e}}^u} hfill \   = 3{x^{frac{2}{3}}}{{	ext{e}}^{sqrt[3]{x}}} - 6sqrt[3]{x}{{	ext{e}}^{sqrt[3]{x}}} + 6{{	ext{e}}^{sqrt[3]{x}}} + C hfill \   = 3left( {{x^{frac{2}{3}}} - 2sqrt[3]{x} + 2} 
ight){{	ext{e}}^{sqrt[3]{x}}} + C hfill \ end{gathered} ]

350.

[egin{gathered}  int {left( {{x^2} - 1} 
ight)sin 2x{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2} - 1,v = sin 2x, hfill \  u = {	ext{2x}},v =  - frac{{cos 2x}}{2}, hfill \   =  - int { - xcos 2x{kern 1pt} {	ext{d}}x}  - frac{{left( {{x^2} - 1} 
ight)cos 2x}}{2} hfill \   = int {xcos 2x{kern 1pt} {	ext{d}}x}  - frac{{left( {{x^2} - 1} 
ight)cos 2x}}{2} hfill \  u = x,v = cos 2x, hfill \  u = 1,v = frac{{sin 2x}}{2}, hfill \   = frac{{xsin 2x}}{2} - int {frac{{sin 2x}}{2}{kern 1pt} {	ext{d}}x}  - frac{{left( {{x^2} - 1} 
ight)cos 2x}}{2} hfill \   = frac{{xsin 2x}}{2} + frac{{cos 2x}}{4} - frac{{left( {{x^2} - 1} 
ight)cos 2x}}{2} + C hfill \   = frac{{2xsin 2x + left( {3 - 2{x^2}} 
ight)cos 2x}}{4} + C hfill \ end{gathered} ]

351.

[egin{gathered}  int x ln left( {x - 1} 
ight){kern 1pt} {	ext{d}}x hfill \  u = ln left( {x - 1} 
ight),v = x, hfill \  u = frac{1}{{x - 1}},v = frac{{{x^2}}}{2}, hfill \   = frac{{ln left( {x - 1} 
ight){x^2}}}{2} - int {frac{{{x^2}}}{{2left( {x - 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{ln left( {x - 1} 
ight){x^2}}}{2} - frac{1}{2}int {frac{{{x^2}}}{{left( {x - 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} - {	ext{1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 1,{x^2} = {left( {u + 1} 
ight)^2}, hfill \   = frac{{ln left( {x - 1} 
ight){x^2}}}{2} - frac{1}{2}int {frac{{{{left( {u + 1} 
ight)}^2}}}{u}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{ln left( {x - 1} 
ight){x^2}}}{2} - frac{1}{2}(int {u{kern 1pt} {	ext{d}}u}  + int {frac{1}{u}{kern 1pt} {	ext{d}}u}  + 2int {1{kern 1pt} {	ext{d}}u} ) hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left( {x - 1} 
ight){x^2}}}{2} - frac{1}{2}(ln u + frac{{{u^2}}}{2} + 2u) hfill \   = frac{{ln left( {x - 1} 
ight){x^2}}}{2} - x - frac{{{{left( {x - 1} 
ight)}^2}}}{4} - frac{{ln left( {x - 1} 
ight)}}{2} + 1 hfill \   = frac{{left[ {2ln left( {x - 1} 
ight) - 1} 
ight]{x^2} - 2x - 2ln left( {x - 1} 
ight)}}{4} + C hfill \ end{gathered} ]

352.

[egin{gathered}  int {{{cos }^2}frac{x}{2}{x^2}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{2},{x^2} = 4{u^2}, hfill \   = 8int {{u^2}{{cos }^2}u{kern 1pt} {	ext{d}}u}  hfill \   = 8int {{u^2}left( {frac{{cos 2u}}{2} + frac{1}{2}} 
ight){kern 1pt} {	ext{d}}u}  hfill \   = 4int {{u^2}left( {cos 2u + 1} 
ight){kern 1pt} {	ext{d}}u}  hfill \   = 4(int {{u^2}cos 2u{kern 1pt} {	ext{d}}u}  + int {{u^2}{kern 1pt} {	ext{d}}u} ) hfill \  w = {u^2},g = cos 2u, hfill \  w = {	ext{2u}},g = frac{{sin 2u}}{2}, hfill \   = 4(frac{{{u^2}sin 2u}}{2} - int {usin 2u{kern 1pt} {	ext{d}}u}  + frac{{{u^3}}}{3}) hfill \   = 4(frac{{{u^2}sin 2u}}{2} - int {usin 2u{kern 1pt} {	ext{d}}u}  + frac{{{u^3}}}{3}) hfill \ end{gathered} ]

[egin{gathered}   = 4(frac{{{u^2}sin 2u}}{2} - int {frac{{cos 2u}}{2}{kern 1pt} {	ext{d}}u}  + frac{{ucos 2u}}{2} + frac{{{u^3}}}{3}) hfill \   = 4(frac{{{u^2}sin 2u}}{2} - frac{{sin 2u}}{4} + frac{{ucos 2u}}{2} + frac{{{u^3}}}{3}) hfill \   = frac{{{x^2}sin x}}{2} - sin x + xcos x + frac{{{x^3}}}{6} + C hfill \  {	ext{ = }}frac{{left( {3{x^2} - 6} 
ight)sin x + 6xcos x + {x^3}}}{6} + C hfill \ end{gathered} ]

353.

[egin{gathered}  int {frac{1}{{{x^2} + 16x + 80}}{kern 1pt} {	ext{d}}x}  = int {frac{1}{{{{left( {x + 8} 
ight)}^2} + 16}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{x + 8}}{4},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{4}, hfill \   = frac{1}{4}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = frac{{arctan u}}{4} hfill \   = frac{{arctan frac{{2x + 16}}{8}}}{4} + C hfill \ end{gathered} ]

354.

[egin{gathered}  int {{{cot }^6}x{{sec }^3}x{kern 1pt} {	ext{d}}x}  hfill \  sec x = frac{{csc x}}{{cot x}},{cot ^2}x = {csc ^2}x - 1, hfill \   = int { - cot xcsc xcdotleft[ { - {{csc }^2}xleft( {{{csc }^2}x - 1} 
ight)} 
ight]{kern 1pt} {	ext{d}}x}  hfill \  u = csc x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - cot xcsc x, hfill \   =  - int {{u^2}left( {{u^2} - 1} 
ight){kern 1pt} {	ext{d}}u}  =  - int {{u^4}{kern 1pt} {	ext{d}}u}  + int {{u^2}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{u^3}}}{3} - frac{{{u^5}}}{5} hfill \   = frac{{{{csc }^3}x}}{3} - frac{{{{csc }^5}x}}{5} + C hfill \   = frac{{5{{sin }^2}x - 3}}{{15{{sin }^5}x}} + C hfill \ end{gathered} ]

355.

[egin{gathered}  int {frac{{{x^3}}}{{x + 3}}{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{x}} + {	ext{3}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 1,{x^3} = {left( {u - 3} 
ight)^3}, hfill \   = int {frac{{{{left( {u - 3} 
ight)}^3}}}{u}{kern 1pt} {	ext{d}}u}  hfill \   = int {{u^2}{kern 1pt} {	ext{d}}u}  - 9int {u{kern 1pt} {	ext{d}}u}  - 27int {frac{1}{u}{kern 1pt} {	ext{d}}u}  + 27int {1{kern 1pt} {	ext{d}}u}  hfill \   =  - 27ln u + frac{{{u^3}}}{3} - frac{{9{u^2}}}{2} + 27u hfill \   = frac{{xleft( {2{x^2} - 9x + 54} 
ight)}}{6} - 27ln left| {x + 3} 
ight| + C hfill \ end{gathered} ]

356.

[egin{gathered}  int {xcos xsin x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{xsin 2x}}{2}{kern 1pt} {	ext{d}}x}  = frac{1}{2}int {xsin 2x{kern 1pt} {	ext{d}}x}  hfill \  u = x,v = sin 2x, hfill \  u = 1,v =  - frac{{cos 2x}}{2}, hfill \   = frac{1}{2}( - int { - frac{{cos 2x}}{2}{kern 1pt} {	ext{d}}x}  - frac{{xcos 2x}}{2}) hfill \   = frac{{sin 2x}}{8} - frac{{xcos 2x}}{4} + C hfill \ end{gathered} ]

357.

[egin{gathered}  int {{{ln }^2}x{kern 1pt} {	ext{d}}x}  hfill \  u = {ln ^2}x,v = 1, hfill \  u = frac{{2ln x}}{x},v = x, hfill \   = x{ln ^2}x - 2int {ln x{kern 1pt} {	ext{d}}x}  hfill \   = x{ln ^2}x - 2(xln x - int {1{kern 1pt} {	ext{d}}x} ) hfill \   = x{ln ^2}x - 2xln x + 2x + C hfill \   = xleft( {{{ln }^2}x - 2ln x + 2} 
ight) + C hfill \ end{gathered} ]

358.

[egin{gathered}  int {t{{	ext{e}}^{ - 2t}}{kern 1pt} {	ext{d}}t}  hfill \  u = t,v = {{	ext{e}}^{ - 2t}}, hfill \  u = 1,v =  - frac{{{{	ext{e}}^{ - 2t}}}}{2}, hfill \   =  - int { - frac{{{{	ext{e}}^{ - 2t}}}}{2}{kern 1pt} {	ext{d}}t}  - frac{{t{{	ext{e}}^{ - 2t}}}}{2} hfill \   =  - int {frac{{{{	ext{e}}^{ - 2t}}}}{4}{kern 1pt} {	ext{d(}} - 2t)}  - frac{{t{{	ext{e}}^{ - 2t}}}}{2} hfill \   =  - frac{{{{	ext{e}}^{ - 2t}}}}{4} - frac{{t{{	ext{e}}^{ - 2t}}}}{2} + C hfill \   =  - frac{{left( {2t + 1} 
ight){{	ext{e}}^{ - 2t}}}}{4} + C hfill \ end{gathered} ]

359.

[egin{gathered}  int {{x^2}cos x{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2},v = cos x, hfill \  u = {	ext{2x}},v = sin x, hfill \   = {x^2}sin x - int {2xsin x{kern 1pt} {	ext{d}}x}  hfill \  u = {	ext{x,v}} = sin x, hfill \  u = 1,v =  =  - cos x, hfill \   = {x^2}sin x - 2( - int { - cos x{kern 1pt} {	ext{d}}x}  - xcos x) hfill \   = {x^2}sin x - 2int {cos x{kern 1pt} {	ext{d}}x}  + 2xcos x hfill \   = {x^2}sin x - 2sin x + 2xcos x hfill \   = left( {{x^2} - 2} 
ight)sin x + 2xcos x + C hfill \ end{gathered} ]

360.

[egin{gathered}  int {x{{	an }^2}x{kern 1pt} {	ext{d}}x}  hfill \  u = x,v = {	an ^2}x, hfill \  u = 1,v = 	an x - x, hfill \   = xleft( {	an x - x} 
ight) - int {(	an x - x{kern 1pt} ){	ext{d}}x}  hfill \   = xleft( {	an x - x} 
ight) - int {	an x{kern 1pt} {	ext{d}}x}  + int {x{kern 1pt} {	ext{d}}x}  hfill \   = xleft( {	an x - x} 
ight) - int {frac{{sin x}}{{cos x}}{kern 1pt} {	ext{d}}x}  + frac{{{x^2}}}{2} hfill \  u = cos x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - sin x, hfill \   = xleft( {	an x - x} 
ight) + int {frac{1}{u}{kern 1pt} {	ext{d}}u}  + frac{{{x^2}}}{2} hfill \   = xleft( {	an x - x} 
ight) + ln left| {cos x} 
ight| + frac{{{x^2}}}{2} + C hfill \ end{gathered} ]

361.

[egin{gathered}  int {{x^2}arctan x{kern 1pt} {	ext{d}}x}  hfill \  u = arctan x,v = {x^2}, hfill \  u = frac{1}{{{x^2} + 1}},v = frac{{{x^3}}}{3}, hfill \   = frac{{{x^3}arctan x}}{3} - int {frac{{{x^3}}}{{3left( {{x^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{{x^3}arctan x}}{3} - frac{1}{3}int {frac{{{x^3}}}{{left( {{x^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \   = frac{{{x^3}arctan x}}{3} - frac{1}{3} 	imes frac{1}{2}int {frac{{u - 1}}{u}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{x^3}arctan x}}{3} - frac{1}{6}(int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{u}{kern 1pt} {	ext{d}}u} ) hfill \   = frac{{{x^3}arctan x}}{3} - frac{1}{6}(u - ln u) hfill \   = frac{{{x^3}arctan x}}{3} - frac{{{x^2} + 1}}{6} + frac{{ln left( {{x^2} + 1} 
ight)}}{6} + C hfill \ end{gathered} ]

362.

[egin{gathered}  int {xcos frac{x}{2}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{2}, hfill \   = 4int {ucos u{	ext{d}}u}  hfill \  w = u,g = cos u, hfill \  w = 1,g = sin u, hfill \   = 4(usin u - int {sin u{kern 1pt} {	ext{d}}u} ) hfill \   = 4usin u + 4cos u hfill \   = 2xsin frac{x}{2} + 4cos frac{x}{2} + C hfill \ end{gathered} ]

363.

[egin{gathered}  int {frac{{{x^3} + 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \  frac{{{x^3} + 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}} = frac{{Ax + B}}{{{x^2} + 1}} + frac{{Cx + D}}{{{{left( {{x^2} + 1} 
ight)}^2}}}, hfill \   = int {left[ {frac{x}{{{x^2} + 1}} + frac{{1 - x}}{{{{left( {{x^2} + 1} 
ight)}^2}}}} 
ight]{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - int {frac{{x - 1}}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{x}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  - int {frac{x}{{{{left( {{x^2} + 1} 
ight)}^2}}}}  + frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x# 1 hfill \  u = {x^2} + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x, hfill \ end{gathered} ]

[egin{gathered}   = frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - frac{1}{2}int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u}  + frac{1}{{{{left( {{x^2} + 1} 
ight)}^2}}}{kern 1pt} {	ext{d}}x hfill \   = frac{{ln u}}{2} - ( - frac{1}{{2u}}) + frac{1}{2}int {frac{1}{{{x^2} + 1}}{kern 1pt} {	ext{d}}x}  + frac{x}{{2left( {{x^2} + 1} 
ight)}} hfill \   = frac{{ln left( {{x^2} + 1} 
ight)}}{2} + frac{1}{{2left( {{x^2} + 1} 
ight)}} + frac{{arctan x}}{2} + frac{x}{{2left( {{x^2} + 1} 
ight)}} hfill \   = frac{{ln left( {{x^2} + 1} 
ight) + arctan x}}{2} + frac{{x + 1}}{{2left( {{x^2} + 1} 
ight)}} + C hfill \  # 1 hfill \  int {frac{1}{{{{left( {a{x^2} + b} 
ight)}^n}}}{kern 1pt} {	ext{d}}x}  = frac{{2n - 3}}{{2bleft( {n - 1} 
ight)}}int {frac{1}{{{{left( {a{x^2} + b} 
ight)}^{n - 1}}}}{kern 1pt} {	ext{d}}x}  + frac{x}{{2bleft( {n - 1} 
ight){{left( {a{x^2} + b} 
ight)}^{n - 1}}}} hfill \ end{gathered} ]

364.

[egin{gathered}  int {frac{{x - 1}}{{{x^2} + 2x + 3}}{kern 1pt} {	ext{d}}x}  hfill \  x - 1 = frac{1}{2}left( {2x + 2} 
ight) - 2, hfill \   = int {left[ {frac{{2x + 2}}{{2left( {{x^2} + 2x + 3} 
ight)}} - frac{2}{{{x^2} + 2x + 3}}{kern 1pt} } 
ight]{	ext{d}}x}  hfill \   = int {frac{{x + 1}}{{{x^2} + 2x + 3}}{kern 1pt} {	ext{d}}x}  - 2int {frac{1}{{{x^2} + 2x + 3}}{kern 1pt} {	ext{d}}x}  hfill \  u = {x^2} + 2x + 3,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 2x + 2, hfill \   = frac{1}{2}int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - 2int {frac{1}{{{{left( {x + 1} 
ight)}^2} + 2}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{ln left( {{x^2} + 2x + 3} 
ight)}}{2} - 2int {frac{1}{{{{left( {x + 1} 
ight)}^2} + 2}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{{x + 1}}{{sqrt 2 }},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{sqrt 2 }}, hfill \ end{gathered} ]

[egin{gathered}   = frac{{ln left( {{x^2} + 2x + 3} 
ight)}}{2} - 2 	imes frac{1}{{sqrt 2 }}int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  hfill \   = frac{{ln left( {{x^2} + 2x + 3} 
ight)}}{2} - frac{{2arctan u}}{{sqrt 2 }} hfill \   = frac{{ln left| {{x^2} + 2x + 3} 
ight|}}{2} - sqrt 2 arctan frac{{x + 1}}{{sqrt 2 }} + C hfill \ end{gathered} ]

365.

[egin{gathered}  int {frac{1}{{sqrt {1 - {x^2}}  + x}}{kern 1pt} {	ext{d}}x}  = int {frac{{sqrt {1 - {x^2}}  - x}}{{1 - 2{x^2}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{{sqrt {1 - {x^2}}  - x}}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  =  - int {frac{{sqrt {1 - {x^2}} }}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \  x = sin u,u = arcsin x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = cos u, hfill \   =  - int {frac{{cos usqrt {1 - {{sin }^2}u} }}{{2{{sin }^2}u - 1}}{kern 1pt} {	ext{d}}u}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{{{{cos }^2}u}}{{2{{sin }^2}u - 1}}{kern 1pt} {	ext{d}}u}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \  sin u = frac{{	an u}}{{sec u}},cos u = frac{1}{{sec u}},{sec ^2}u = {	an ^2}u + 1, hfill \ end{gathered} ]

[egin{gathered}   =  - int {{{sec }^2}ucdotfrac{1}{{left( {{{	an }^2}u - 1} 
ight)left( {{{	an }^2}u + 1} 
ight)}}{kern 1pt} {	ext{d}}u}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \  v = 	an u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   =  - int {frac{1}{{left( {{v^2} - 1} 
ight)left( {{v^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}v}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{1}{{left( {v - 1} 
ight)left( {v + 1} 
ight)left( {{v^2} + 1} 
ight)}}{kern 1pt} {	ext{d}}v}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {left[ { - frac{1}{{2left( {{v^2} + 1} 
ight)}} - frac{1}{{4left( {v + 1} 
ight)}} + frac{1}{{4left( {v - 1} 
ight)}}} 
ight]{kern 1pt} {	ext{d}}v}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \ end{gathered} ]

[egin{gathered}   = frac{1}{2}int {frac{1}{{{v^2} + 1}}{kern 1pt} {	ext{d}}v}  + frac{1}{4}int {frac{1}{{v + 1}}{kern 1pt} {	ext{d}}v}  - frac{1}{4}int {frac{1}{{v - 1}}{kern 1pt} {	ext{d}}v}  + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{arctan v}}{2} + frac{{ln left( {v + 1} 
ight)}}{4} - frac{{ln left( {v - 1} 
ight)}}{4} + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \   = frac{u}{2} + frac{{ln left( {	an u + 1} 
ight)}}{4} - frac{{ln left( {	an u - 1} 
ight)}}{4} + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = arcsin x,	an left( {arcsin x} 
ight) = frac{x}{{sqrt {1 - {x^2}} }}, hfill \   = frac{{arcsin x}}{2} + frac{{ln left( {frac{x}{{sqrt {1 - {x^2}} }} + 1} 
ight)}}{4} - frac{{ln left( {frac{x}{{sqrt {1 - {x^2}} }} - 1} 
ight)}}{4} + int {frac{x}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  hfill \ end{gathered} ]

[egin{gathered}  u = 2{x^2} - 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 4x, hfill \   = frac{{arcsin x}}{2} + frac{{ln left( {frac{x}{{sqrt {1 - {x^2}} }} + 1} 
ight)}}{4} - frac{{ln left( {frac{x}{{sqrt {1 - {x^2}} }} - 1} 
ight)}}{4} + frac{1}{4}int {} frac{1}{u}{kern 1pt} {	ext{d}}u hfill \   = frac{{ln left| {frac{x}{{sqrt {1 - {x^2}} }} - 1} 
ight|}}{4} - frac{{ln left| {frac{x}{{sqrt {1 - {x^2}} }} + 1} 
ight|}}{4} - frac{{ln left| {2{x^2} - 1} 
ight|}}{4} - frac{{arcsin x}}{2} + C hfill \ end{gathered} ]

366.

[egin{gathered}  int {frac{1}{{sqrt {1 - {x^2}}  + 1}}{kern 1pt} {	ext{d}}x}  = int { - frac{{sqrt {1 - {x^2}}  - 1}}{{{x^2}}}{kern 1pt} {	ext{d}}x}  hfill \   =  - int {frac{{sqrt {1 - {x^2}}  - 1}}{{{x^2}}}{kern 1pt} {	ext{d}}x}  =  - left( {int {frac{{sqrt {1 - {x^2}} }}{{{x^2}}}{kern 1pt} {	ext{d}}x}  - int {frac{1}{{{x^2}}}{kern 1pt} {	ext{d}}x} } 
ight) hfill \  u = sqrt {1 - {x^2}} ,v = frac{1}{{{x^2}}}, hfill \  u =  - frac{x}{{sqrt {1 - {x^2}} }},v =  - frac{1}{x}, hfill \   =  - left( { - frac{{sqrt {1 - {x^2}} }}{x} - int {frac{1}{{sqrt {1 - {x^2}} }}{kern 1pt} {	ext{d}}x}  + frac{1}{x}{kern 1pt} } 
ight) hfill \   =  - left( { - frac{{sqrt {1 - {x^2}} }}{x} - arcsin x + frac{1}{x}{kern 1pt} } 
ight) hfill \   = frac{{sqrt {1 - {x^2}} }}{x} + arcsin x - frac{1}{x} + C hfill \   = arcsin x + frac{{sqrt {1 - {x^2}}  - 1}}{x} + C hfill \ end{gathered} ]

367.

[egin{gathered}  int {frac{1}{{sqrt {2x}  + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {2x}  + 1,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{sqrt {2x} }}, hfill \   = int {frac{{u - 1}}{u}{kern 1pt} {	ext{d}}u}  = int {1{kern 1pt} {	ext{d}}u}  - int {frac{1}{u}{kern 1pt} {	ext{d}}u}  hfill \   = u - ln u hfill \   = sqrt {2x}  - ln left( {sqrt {2x}  + 1} 
ight) + 1 + C hfill \   = sqrt {2x}  - ln left( {sqrt {2x}  + 1} 
ight) + C hfill \ end{gathered} ]

368.

[egin{gathered}  int {frac{1}{{sqrt {{{left( {{x^2} + 1} 
ight)}^3}} }}} {kern 1pt} {	ext{d}}x = int {frac{1}{{{{left( {{x^2} + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}x}  hfill \  x = 	an u,u = arctan x,frac{{{	ext{d}}x}}{{{	ext{d}}u}} = {sec ^2}u, hfill \   = int {frac{{{{sec }^2}u}}{{{{left( {{{	an }^2}u + 1} 
ight)}^{frac{3}{2}}}}}{kern 1pt} {	ext{d}}u}  hfill \  {	an ^2}u + 1 = {sec ^2}u, hfill \   = int {frac{1}{{sec u}}{kern 1pt} {	ext{d}}u}  = int {cos u{kern 1pt} {	ext{d}}u}  = sin u hfill \  u = arctan x,sin left( {arctan x} 
ight) = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = frac{x}{{sqrt {{x^2} + 1} }} + C hfill \ end{gathered} ]

369.

[egin{gathered}  int {frac{1}{{left( {x - 2} 
ight)left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{1}{{x + 1}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{1}{{{{left( {x + 1} 
ight)}^2}}},x = frac{1}{u} - 1, hfill \   = int {frac{1}{{3u - 1}}{kern 1pt} {	ext{d}}u}  hfill \  {	ext{v}} = {	ext{3u}} - {	ext{1}},frac{{{	ext{d}}v}}{{{	ext{d}}u}} = 3, hfill \   = frac{1}{3}int {frac{1}{v}{kern 1pt} {	ext{d}}v}  = frac{{ln v}}{3} = frac{{ln left( {3u - 1} 
ight)}}{3} hfill \   = frac{{ln left| {frac{3}{{x + 1}} - 1} 
ight|}}{3} + C hfill \ end{gathered} ]

370.

[egin{gathered}  int {frac{1}{{2{x^2} - 1}}{kern 1pt} {	ext{d}}x}  = int {frac{2}{{left( {2x - sqrt 2 } 
ight)left( {2x + sqrt 2 } 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  frac{1}{{2{x^2} - 1}} = frac{1}{{left( {x + frac{{sqrt 2 }}{2}} 
ight)left( {2x - sqrt 2 } 
ight)}} hfill \   = frac{A}{{x + frac{{sqrt 2 }}{2}}} + frac{B}{{2x - sqrt 2 }} hfill \   = frac{1}{{sqrt 2 }}int {frac{1}{{2x - sqrt 2 }}{kern 1pt} {	ext{d}}x}  - frac{1}{{sqrt 2 }}int {frac{1}{{2x + sqrt 2 }}{kern 1pt} {	ext{d}}x}  hfill \   = frac{{ln left| {2x - sqrt 2 } 
ight|}}{{{2^{frac{3}{2}}}}} - frac{{ln left| {2x + sqrt 2 } 
ight|}}{{{2^{frac{3}{2}}}}} + C hfill \ end{gathered} ]

371.

[egin{gathered}  int {frac{{{x^3}}}{{{x^2} + 9}}{kern 1pt} {	ext{d}}x}  hfill \  u = frac{1}{{{x^2} + 9}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - frac{{2x}}{{{{left( {{x^2} + 9} 
ight)}^2}}},{x^2} = frac{1}{u} - 9, hfill \   = frac{1}{2}int {frac{{9u - 1}}{{{u^2}}}{kern 1pt} {	ext{d}}u}  = frac{1}{2}(9int {frac{1}{u}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{{u^2}}}{kern 1pt} {	ext{d}}u} ) hfill \   = frac{1}{2}(9ln u + frac{1}{u}) = frac{{9ln u}}{2} + frac{1}{{2u}} hfill \  u = frac{1}{{{x^2} + 9}},ln left( {frac{1}{{{x^2} + 9}}} 
ight) =  - ln left( {{x^2} + 9} 
ight), hfill \   = frac{{{x^2} + 9}}{2} - frac{{9ln left( {{x^2} + 9} 
ight)}}{2} + C hfill \   = frac{{{x^2} - 9ln left( {{x^2} + 9} 
ight)}}{2} + C hfill \ end{gathered} ]

372.

[egin{gathered}  int {frac{{1 - x}}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x}  =  - int {frac{{x - 1}}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x}  hfill \   =  - (int {frac{x}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x}  - int {frac{1}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x} ) hfill \  u = 9 - 4{x^2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} =  - 8x, hfill \   =  - ( - frac{1}{8}int {frac{1}{{sqrt u }}{kern 1pt} {	ext{d}}u}  - int {frac{1}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x} ) hfill \   =  - ( - frac{{sqrt u }}{4} - int {frac{1}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x} ) hfill \   =  - ( - frac{{sqrt {9 - 4{x^2}} }}{4} - int {frac{1}{{sqrt {9 - 4{x^2}} }}{kern 1pt} {	ext{d}}x} ) hfill \  u = frac{{2x}}{3},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{2}{3}, hfill \   =  - ( - frac{{sqrt {9 - 4{x^2}} }}{4} - frac{1}{2}int {frac{1}{{sqrt {1 - {u^2}} }}{kern 1pt} {	ext{d}}u} ) hfill \ end{gathered} ]

[egin{gathered}   =  - ( - frac{{sqrt {9 - 4{x^2}} }}{4} - frac{{arcsin u}}{2}) hfill \   =  - ( - frac{{sqrt {9 - 4{x^2}} }}{4} - frac{{arcsin frac{{2x}}{3}}}{2}) hfill \   = frac{{sqrt {9 - 4{x^2}} }}{4} + frac{{arcsin frac{{2x}}{3}}}{2} + C hfill \ end{gathered} ]

373.

[egin{gathered}  int {frac{1}{{{{	ext{e}}^x} + {{	ext{e}}^{ - x}}}}{kern 1pt} {	ext{d}}x}  = int {frac{{{{	ext{e}}^x}}}{{{{	ext{e}}^{2x}} + 1}}{kern 1pt} {	ext{d}}x}  hfill \  u = {{	ext{e}}^x},frac{{du}}{{dx}} = {e^x}, hfill \   = int {frac{1}{{{u^2} + 1}}{kern 1pt} {	ext{d}}u}  = arctan u hfill \   = arctan {{	ext{e}}^x} + C hfill \ end{gathered} ]

374.

[egin{gathered}  int {sec x{{	an }^3}x{	ext{d}}x}  hfill \  {	an ^2}x = {sec ^2}x - 1, hfill \   = int {left( {{{sec }^2}x - 1} 
ight)cdotsec x	an x{	ext{d}}x}  hfill \  u = sec x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = sec x	an x, hfill \   = int {({u^2} - 1){kern 1pt} {	ext{d}}u}  = int {{u^2}{kern 1pt} {	ext{d}}u}  - int {1{kern 1pt} {	ext{d}}u}  hfill \   = frac{{{u^3}}}{3} - u hfill \   = frac{{{{sec }^3}x}}{3} - sec x + C hfill \ end{gathered} ]

375.

[egin{gathered}  int {sin 5xsin 7x{kern 1pt} {	ext{d}}x}  = int { - frac{{cos 12x - cos 2x}}{2}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}int {cos 2x{kern 1pt} {	ext{d}}x}  - frac{1}{2}int {cos 12x{kern 1pt} {	ext{d}}x}  hfill \  {	ext{u}} = {	ext{12x}},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = 12, hfill \   = frac{1}{2}int {cos 2x{kern 1pt} {	ext{d}}x}  - frac{1}{2} 	imes frac{1}{{12}}int {cos u{kern 1pt} {	ext{d}}u}  hfill \   = frac{1}{2}int {cos 2x{kern 1pt} {	ext{d}}x}  - frac{{sin 12x}}{{24}} hfill \   = frac{{sin 2x}}{4} - frac{{sin 12x}}{{24}} + C hfill \ end{gathered} ]

376.

[egin{gathered}  int {cos frac{x}{2}cos x{kern 1pt} {	ext{d}}x}  hfill \  u = frac{x}{2},frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{2}, hfill \   = 2int {cos ucos 2u{kern 1pt} {	ext{d}}u}  hfill \   = 2int {frac{{cos 3u + cos u}}{2}{kern 1pt} {	ext{d}}u}  hfill \   = 2(frac{1}{2}int {cos 3u{kern 1pt} {	ext{d}}u}  + frac{1}{2}int {cos u{kern 1pt} {	ext{d}}u} ) hfill \   = int {cos 3u{kern 1pt} {	ext{d}}u}  + int {cos u{kern 1pt} {	ext{d}}u}  hfill \   = frac{{sin 3u}}{3} + sin u hfill \   = frac{{sin frac{{3x}}{2}}}{3} + sin frac{x}{2} + C hfill \ end{gathered} ]

377.

[egin{gathered}  int {sin 2xcos 3x{kern 1pt} {	ext{d}}x}  = int {frac{{sin 5x - sin x}}{2}{kern 1pt} {	ext{d}}x}  hfill \   = frac{1}{2}int {sin 5x{kern 1pt} {	ext{d}}x}  - frac{1}{2}int {sin x{kern 1pt} {	ext{d}}x}  hfill \   = frac{{cos x}}{2} - frac{{cos 5x}}{{10}} + C hfill \ end{gathered} ]

378.

[egin{gathered}  int {frac{{ln 	an x}}{{cos xsin x}}{kern 1pt} {	ext{d}}x}  hfill \   = int {csc xsec xln 	an x{kern 1pt} {	ext{d}}x}  hfill \  csc x = frac{{sec x}}{{	an x}}, hfill \   = int {{{sec }^2}xcdotfrac{{ln 	an x}}{{	an x}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{{ln u}}{u}{kern 1pt} {	ext{d}}u}  hfill \  v = ln u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} = frac{1}{u}, hfill \   = int {v{kern 1pt} {	ext{d}}v}  = frac{{{v^2}}}{2} = frac{{{{ln }^2}u}}{2} hfill \   = frac{{{{ln }^2}	an x}}{2} + C hfill \ end{gathered} ]

379.

[egin{gathered}  int {frac{1}{{cos xsin x}}{kern 1pt} {	ext{d}}x}  = int {csc xsec x{kern 1pt} {	ext{d}}x}  hfill \   = int {frac{{{{sec }^2}x}}{{	an x}}{kern 1pt} {	ext{d}}x}  hfill \  u = 	an x,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = {sec ^2}x, hfill \   = int {frac{1}{u}{kern 1pt} {	ext{d}}u}  = ln u = ln 	an x hfill \   = ln left| {	an x} 
ight| + C hfill \ end{gathered} ]

380.

[egin{gathered}  int {frac{{arctan sqrt x }}{{sqrt x left( {x + 1} 
ight)}}{kern 1pt} {	ext{d}}x}  hfill \  u = arctan sqrt x ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{1}{{2sqrt x left( {x + 1} 
ight)}}, hfill \   = 2int {u{kern 1pt} {	ext{d}}u}  = {u^2} hfill \   = {arctan ^2}sqrt x  + C hfill \ end{gathered} ]

381.

[egin{gathered}  int {frac{{x	an left( {sqrt {{x^2} + 1} } 
ight)}}{{sqrt {{x^2} + 1} }}{kern 1pt} {	ext{d}}x}  hfill \  u = sqrt {{x^2} + 1} ,frac{{{	ext{d}}u}}{{{	ext{d}}x}} = frac{x}{{sqrt {{x^2} + 1} }}, hfill \   = int {	an u{kern 1pt} {	ext{d}}u}  = int {frac{{sin u}}{{cos u}}{kern 1pt} {	ext{d}}u}  hfill \  v = cos u,frac{{{	ext{d}}v}}{{{	ext{d}}u}} =  - sin u, hfill \   =  - int {frac{1}{v}{kern 1pt} {	ext{d}}v}  =  - ln v =  - ln left( {cos u} 
ight) hfill \   =  - ln left( {cos sqrt {{x^2} + 1} } 
ight) hfill \   =  - ln left| {cos sqrt {{x^2} + 1} } 
ight| + C hfill \ end{gathered} ]
推薦閱讀:

f(f(x))=(x+3)/(x+1) 求f(x)?
研究質數,本質上是否就在研究加法和乘法的關係/規律?
矩陣的整數冪是不是也滿足歐拉定理?
如何高效地自學大學數學課本?

TAG:高等数学 | 高等数学大学课程 | 微积分 |