tf 三
1)TF常用函數
batch_size = tf.size(labels)
labels = tf.expand_dims(labels,1)
indices = tf.expand_dims(tf.range(0,batch_size,1),1)
concated = tf.concat(1,[indices,labels])
onehot_labels = tf.sparse_to_dense(concated,tf.pack([batch_size,NUM_CLASSES]),1.0,0.0)
2)輸出結果,使用SumaryWriter生成匯總值(summary values)
tf.summary.scalar(name,op)
summary_op = tf.summary.merge_all()
創建好session後,實例化一個tf.summary.FileWriter
summary_writer = tf.summary.FileWriter(,graph=sess.graph_def)
每次運行一個summary_op,都會往事件文件中寫入最新的即時數據
summary_str = sess.run(summary_op,feed_dict=feed_dict)
summary_writer.add_summary(summary_str,step)
summary_writer.flush()
summary_writer.close()
3)圖表
with tf.Graph().as_default():
_,loss_value = sess.run([train_op,loss],feed_dict=feed_dict)
4)保存檢查點
saver = tf.train.Saver()
saver.save(sess,dri.step)
saver.restore(sess,dir)
推薦閱讀:
※請問batch_normalization做了normalization後為什麼要變回來?
※TensorFlow的Summary
※TensorFlow的checkpoint中變數的重命名
※班主任在窗戶後和公車上有人偷看你手機哪個更可怕一些?
TAG:TensorFlow |