論文分解器:Hintons capsule 2017

EN視頻筆記:草稿(可忽略), 最後正式理解會用中文視頻筆記整理

CapsNet implementation

Abstract 視頻筆記 中文 EN

what is a capsule?

what can this activity vector tell us?

how capsules cross level interact?

how to understand routing-by-agreement?

Introduction paragraph 1 視頻筆記 中文 EN

how human vision ignore irrelevant details?

knowledge from a sequence of fixation points vs a single fixation point

Assumptions proposed in this paper

Introduction paragraph 2 視頻筆記 EN 中文

parse trees

parse tree vs neural network

capsules vs layer vs parse tree nodes

iterative routing process and problem to solve

help needed from pre-paper1,2

Introduction paragraph 3 視頻筆記 EN 中文

active capsule vs properties of an entity in an image

instantiation parameters vs image entity properties

existence as special property of the entity in image

orientation of vector represent all other properties of the entity in the image

non-linearity activation function vs capsule vector representation power

Introduction paragraph 4 視頻筆記 EN 中文

destination of a capsule

two things help capsule to fulfill this dream

dynamic routing mechanism: routing and dynamic

How the portion of each parent capsule vary?

how to measure similarity?

how to visualize this similarity comparison process?

what is "routing by agreement" mechanism?

What more power does "routing by agreement" offer to models?

Introduction paragraph 5 視頻筆記 EN 中文

What special about CNN?

What can CNN do with this specialty?

How capsule model inherit and differ from CNN?

What is special about capsule and capsule model?

section 2 paragraph 1-4 視頻筆記 EN 中文

Aim of the paper

how a capsule detect an entity?

current input, output vector, "squashing" function

total input

coupling coefficients

what is the relationship between c_{ij}, b_{ij}

section 2 paragraph 5-7 視頻筆記 EN 中文

what are b_{ij} ?

how to update b_{ij} ?

how to understand the pseudo code of Routing algo?

section 3 視頻筆記 EN 中文

probability existence of a capsules entity

how to design a loss for capsule?

confident on both yes and no

section 4-4.1 視頻筆記 EN 中文

How to construct a CapsNet?

How to train CapsNet to reconstruct digit image?

why scale down reconstruction loss when calc total loss?

How to make CapsNet to reconstruct a digit image?

from Fig3 can we see how good CapsNet really is?

section 5 視頻筆記 EN 中文

dataset

base line model

CapsNet

How comparison table show the effectiveness of routing and reconstruction?

How reconstruction help performance?

section 5.1-2 視頻筆記 EN 中文

What the individual dimensions of a capsule represent

how mask work

what reconstruction is actually learning

perturbed vector + decoder network help see what individual dimension represent?

Robustness to Affine Transformation

Compare CNN vs CapsNet on affNIST dataset

section 6-6.2 視頻筆記 中文

dynamic routing vs overlapping objects

How to create overlapping MNIST, multi-MNIST?

How well CapsNet is doing with multi-MNIST?

section 7 視頻筆記 中文

CapsNet 嘗試了其他幾個數據 (都比較小)

在CIFAR10上的效果,只能等同於早起的CNN的效果

效果不佳的原因簡要分析

section8 視頻筆記 中英文

早起speech recognition多用HMM模型

為什麼RNN比HMM更高效?one-to-n vs distributed representation

RNN 比 HMM高效多少?2N的參數 VS N*2的參數


推薦閱讀:

人工智慧會替代傳統商科的那些職業?
為什麼要學習吳恩達的機器學習?

TAG:学术论文 | 深度学习DeepLearning | 吴恩达AndrewNg |