NI偷偷發布了分析和機器學習工具包
LabVIEW 2017 Analytics and Machine Learning Toolkit
NI在機器學習的大潮下也發布了機器學習工具包
模型訓練支持Windows平台,部署支持Windows和NI Linux RT平台,演算法用的是之前故障預診斷的 IMS Center Watchdog Agent工具包,不過沒有特徵提取的部分,只有特徵處理模型訓練和部署的功能
Analytics and
Machine Learning ToolkitJuly 2017,
377059A-01
The LabVIEW
Analytics and Machine Learning toolkit includes VIs for training machinelearning models that discover patterns in large amounts of data. You can deploytrained machine learning models to recognize patterns in new data.The following figure demonstrates the machine learning process when you use the Analytics and Machine Learning Toolkit.
The previous machine learning process contains the following components:
Data
Collection—Collects data from data acquisition devices or other sources.Feature Extraction
and Reduction—Creates features based on your domain knowledge of data andreduces the dimension of data so that you can apply machine learning algorithmsto the training data.Model
Creation—Trains models using machine learning algorithms and training data.Model
Validation—Validates models using model evaluation metrics and test data.Deployment—Deploys trained models.
The Analytics and Machine Learning Toolkit uses algorithms from the IMS Center Watchdog Agent.
基本上最常用的幾個機器學習的演算法都有了,感覺比之前NI Lab裡面的演算法完善了不少,把底層的細節封裝掉了,並且模型的訓練和部署分離,以後可以考慮實現終端節點模型的動態更新。
推薦閱讀:
※關於VI連線板的一個Tips
※推薦一個免費的LabVIEW SVN插件Viewpoint TSVN Toolkit
※LabVIEW和Python二進位數據文件互操作
※關於LabVIEW的句柄(Handle)二三事
※Matlab 改名部立功啦!兼實時系統雜談