二分圖的最大匹配、完美匹配和匈牙利演算法
這篇文章講無權二分圖(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用於求解匹配的匈牙利演算法(Hungarian Algorithm);不講帶權二分圖的最佳匹配。
本文摘取自網路,為本人學習相關知識的參考文章,邏輯非常清楚,適合新手學習相關知識,推薦給大家。下文附了原文鏈接及相應代碼,有興趣的可以去原文閱讀。
二分圖:簡單來說,如果圖中點可以被分為兩組,並且使得所有邊都跨越組的邊界,則這就是一個二分圖。準確地說:把一個圖的頂點劃分為兩個不相交集 U 和 V ,使得每一條邊都分別連接U 、 V 中的頂點。如果存在這樣的劃分,則此圖為一個二分圖。二分圖的一個等價定義是:不含有「含奇數條邊的環」的圖。圖 1 是一個二分圖。為了清晰,我們以後都把它畫成圖 2 的形式。
匹配:在圖論中,一個「匹配」(matching)是一個邊的集合,其中任意兩條邊都沒有公共頂點。例如,圖 3、圖 4 中紅色的邊就是圖 2 的匹配。
我們定義匹配點、匹配邊、未匹配點、非匹配邊,它們的含義非常顯然。例如圖 3 中 1、4、5、7 為匹配點,其他頂點為未匹配點;1-5、4-7為匹配邊,其他邊為非匹配邊。
最大匹配:一個圖所有匹配中,所含匹配邊數最多的匹配,稱為這個圖的最大匹配。圖 4 是一個最大匹配,它包含 4 條匹配邊。
完美匹配:如果一個圖的某個匹配中,所有的頂點都是匹配點,那麼它就是一個完美匹配。圖 4 是一個完美匹配。顯然,完美匹配一定是最大匹配(完美匹配的任何一個點都已經匹配,添加一條新的匹配邊一定會與已有的匹配邊衝突)。但並非每個圖都存在完美匹配。
舉例來說:如下圖所示,如果在某一對男孩和女孩之間存在相連的邊,就意味著他們彼此喜歡。是否可能讓所有男孩和女孩兩兩配對,使得每對兒都互相喜歡呢?圖論中,這就是完美匹配問題。如果換一個說法:最多有多少互相喜歡的男孩/女孩可以配對兒?這就是最大匹配問題。
基本概念講完了。求解最大匹配問題的一個演算法是匈牙利演算法,下面講的概念都為這個演算法服務。
交替路:從一個未匹配點出發,依次經過非匹配邊、匹配邊、非匹配邊…形成的路徑叫交替路。
增廣路:從一個未匹配點出發,走交替路,如果途徑另一個未匹配點(出發的點不算),則這條交替路稱為增廣路(agumenting path)。例如,圖 5 中的一條增廣路如圖 6 所示(圖中的匹配點均用紅色標出):
增廣路有一個重要特點:非匹配邊比匹配邊多一條。因此,研究增廣路的意義是改進匹配。只要把增廣路中的匹配邊和非匹配邊的身份交換即可。由於中間的匹配節點不存在其他相連的匹配邊,所以這樣做不會破壞匹配的性質。交換後,圖中的匹配邊數目比原來多了 1 條。
我們可以通過不停地找增廣路來增加匹配中的匹配邊和匹配點。找不到增廣路時,達到最大匹配(這是增廣路定理)。匈牙利演算法正是這麼做的。在給出匈牙利演算法 DFS 和 BFS 版本的代碼之前,先講一下匈牙利樹。
匈牙利樹一般由 BFS 構造(類似於 BFS 樹)。從一個未匹配點出發運行 BFS(唯一的限制是,必須走交替路),直到不能再擴展為止。例如,由圖 7,可以得到如圖 8 的一棵 BFS 樹:
這棵樹存在一個葉子節點為非匹配點(7 號),但是匈牙利樹要求所有葉子節點均為匹配點,因此這不是一棵匈牙利樹。如果原圖中根本不含 7 號節點,那麼從 2 號節點出發就會得到一棵匈牙利樹。這種情況如圖 9 所示(順便說一句,圖 8 中根節點 2 到非匹配葉子節點 7 顯然是一條增廣路,沿這條增廣路擴充後將得到一個完美匹配)。
匈牙利演算法的要點如下
- 從左邊第 1 個頂點開始,挑選未匹配點進行搜索,尋找增廣路。
- 如果經過一個未匹配點,說明尋找成功。更新路徑信息,匹配邊數 +1,停止搜索。
- 如果一直沒有找到增廣路,則不再從這個點開始搜索。事實上,此時搜索後會形成一棵匈牙利樹。我們可以永久性地把它從圖中刪去,而不影響結果。
- 由於找到增廣路之後需要沿著路徑更新匹配,所以我們需要一個結構來記錄路徑上的點。DFS 版本通過函數調用隱式地使用一個棧,而 BFS 版本使用 prev 數組。
性能比較
兩個版本的時間複雜度均為 O(V?E) 。DFS 的優點是思路清晰、代碼量少,但是性能不如 BFS。我測試了兩種演算法的性能。對於稀疏圖,BFS 版本明顯快於 DFS 版本;而對於稠密圖兩者則不相上下。在完全隨機數據 9000 個頂點 4,0000 條邊時前者領先後者大約 97.6%,9000 個頂點 100,0000 條邊時前者領先後者 8.6%, 而達到 500,0000 條邊時 BFS 僅領先 0.85%。
補充定義和定理:
最大匹配數:最大匹配的匹配邊的數目
最小點覆蓋數:選取最少的點,使任意一條邊至少有一個端點被選擇最大獨立數:選取最多的點,使任意所選兩點均不相連
最小路徑覆蓋數:對於一個 DAG(有向無環圖),選取最少條路徑,使得每個頂點屬於且僅屬於一條路徑。路徑長可以為 0(即單個點)。定理1:最大匹配數 = 最小點覆蓋數(這是 Konig 定理)
定理2:最大匹配數 = 最大獨立數 定理3:最小路徑覆蓋數 = 頂點數 - 最大匹配數原文鏈接以及匈牙利演算法的 DFS 和 BFS 版本的代碼
推薦閱讀:
※Benchmark決策的天敵——誘餌定價在汽車領域的應用
※靠譜的人生指南:萬花筒策略
※哪些遊戲策略可以應用於科學研究?
※解析《超限戰》,你以為戰爭就是打打殺殺嗎?