學習筆記TF054:TFLearn、Keras
元框架(metaframework)。
TFLearn。模塊化深度學習框架,更高級API,快速實驗,完全透明兼容。
TFLearn實現AlexNet。
https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py
牛津大學鮮花數據集(Flower Dataset)。Visual Geometry Group Home Page 。提供17個類別鮮花數據,每個類別80張圖片,有大量姿態、光變化。
# -*- coding: utf-8 -*-
""" AlexNet.
Applying Alexnet to Oxfords 17 Category Flower Dataset classification task.
References:
- Alex Krizhevsky, Ilya Sutskever & Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. NIPS, 2012.
- 17 Category Flower Dataset. Maria-Elena Nilsback and Andrew Zisserman.
Links:
- [AlexNet Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- [Flower Dataset (17)](Visual Geometry Group Home Page)
"""
from __future__ import division, print_function, absolute_import
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.normalization import local_response_normalization
from tflearn.layers.estimator import regression
import tflearn.datasets.oxflower17 as oxflower17
# 載入數據
X, Y = oxflower17.load_data(one_hot=True, resize_pics=(227, 227))
# Building AlexNet 構建網路模型
network = input_data(shape=[None, 227, 227, 3])
network = conv_2d(network, 96, 11, strides=4, activation=relu)
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 5, activation=relu)
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 384, 3, activation=relu)
network = conv_2d(network, 384, 3, activation=relu)
network = conv_2d(network, 256, 3, activation=relu)
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = fully_connected(network, 4096, activation=tanh)
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation=tanh)
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation=softmax)
network = regression(network, optimizer=momentum,
loss=categorical_crossentropy,
learning_rate=0.001)
# Training 訓練模型 載入AlexNet模型檢查點文件
model = tflearn.DNN(network, checkpoint_path=model_alexnet,
max_checkpoints=1, tensorboard_verbose=2)
model.fit(X, Y, n_epoch=1000, validation_set=0.1, shuffle=True,
show_metric=True, batch_size=64, snapshot_step=200,
snapshot_epoch=False, run_id=alexnet_oxflowers17)
Keras。高級Python神經網路框架。https://keras.io/。TensorFlow默認框架。快速搭建原型。兼容Theano和TensorFlow。Keras高度封裝,適合新手,代碼更新快,示例代碼多,文檔、討論區完善。自動調用GPU並行計算。模塊化,模型神經層、成本函數、優化器、初始化、激活函數、規範化模塊,組合創建模型。極簡。易擴展,容易添加新模塊。Python語言。
Keras模型。Keras核心數據結構是模型。模型組織網路層。Sequential模型,網路層順序構成棧,單輸入單輸出,層間只有相鄰關係,簡單模型。Model模型建立複雜模型。
Sequential模型。載入完數據,X_train,Y_train,X_test,Y_test。構建模型:
from keras.models import Sequential
from keras.layers.core import Dense, Dropout,Activation
model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation(relu))
model.add(Dense(output_dim=10))
model.add(Activation(softmax))
model.compile(loss=categorical_crossentropy, optimizer=sgd, metrics=accuracy)
model.fit(X_train, Y_train, batch_size=32, nb_epoch=5)
loss_and_metrics = model.evaluate(X_test, Y_test, batch_size=32)
Keras源碼示例 fchollet/keras :CIFAR10-圖片分類(CNN、實時數據)、IMDB-電影評論觀點分類(LSTM)、Reuters-新聞主題分類(多層感知器)、MNIST-手寫數字識別(多層感知器、CNN)、OCR-識別字元級文本生成(LSTM)。
安裝。pip install keras 。選擇依賴後端,~/.keras/keras.json 修改最後一行"backend":"fensorflow" 。
Keras實現卷積神經網路。
https://github.com/fchollet/blob/master/examples/mnist_cnn.py 。
#!/usr/bin/python
# -*- coding:utf8 -*-
Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10 # 分類數
epochs = 12 # 訓練輪數
# input image dimensions 輸入圖片維度
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
# 載入數據
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == channels_first:
#使用Theano順序:(conv_dim1,channels,conv_dim2,conv_dim3)
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
#使用TensorFlow順序:(conv_dim1conv_dim2,conv_dim3,channels,)
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype(float32)
x_test = x_test.astype(float32)
x_train /= 255
x_test /= 255
print(x_train shape:, x_train.shape)
print(x_train.shape[0], train samples)
print(x_test.shape[0], test samples)
# convert class vectors to binary class matrices 將類向量轉換為二進位類矩陣
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
#模型構建:2個卷積層、1個池化層、2個全連接層
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation=relu,
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation=relu))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation=relu))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation=softmax))
# 模型編譯
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=[accuracy])
# 模型訓練
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
# 模型評估
score = model.evaluate(x_test, y_test, verbose=0)
print(Test loss:, score[0])
print(Test accuracy:, score[1])
模型載入保存。 https://github.com/fchollet/keras/blob/master/tests/test_model_saving.py 。
Keras的save_model、load_model方法將模型、權重保存到HDF5文件。包括模型結構、權重、訓練配置(損失函數、優化器)。方便中斷後再繼續訓練。
from keras.models import save_model, load_model
def test_sequential_model_saving():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(RepeatVector(3))
model.add(TimeDistributed(Dense(3)))
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy],
sample_weight_mode=temporal)
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
out = model.predict(x)
_, fname = tempfile.mkstemp(.h5) # 創建HDFS 5文件
save_model(model, fname)
new_model = load_model(fname)
os.remove(fname)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
# test that new updates are the same with both models
# 檢測新保存的模型和之前定義的模型是否一致
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
new_model.train_on_batch(x, y)
out = model.predict(x)
out2 = new_model.predict(x)
assert_allclose(out, out2, atol=1e-05)
只保存模型結構。
json_string = model.to_jsion()
yaml_string = model.to_yaml()
手動編輯。
from keras.models import model_from_json
model = model_from_json(json_string)
model = model_from_yaml(yaml_string)
只保存模型權重。
model.save_weights(my_model_weights.h5)
model.load_weights(my_model_weights.h5)
參考資料:
《TensorFlow技術解析與實戰》
歡迎推薦上海機器學習工作機會,我的微信:qingxingfengzi
推薦閱讀:
※如何評價文章「谷歌太可怕?專家:中國智能晶元引領世界」?
※如何看待Jeff Dean&Hinton投到ICLR17的MoE的工作?
※深度学习现在坑还多吗?
※Facenet即triplet network模型訓練,loss不收斂的問題?
TAG:TensorFlow | 机器学习 | 深度学习DeepLearning |