數據科學的完整學習路徑之Python
假如你想成為一個數據科學家,或者已經是數據科學家的你想擴展你的技能,那麼你已經來對地方了。本文的目的就是給數據分析方面的Python新手提供一個完整的學習路徑。該路徑提供了你需要學習的利用Python進行數據分析的所有步驟的完整概述。如果你已經有一些相關的背景知識,或者你不需要路徑中的所有內容,你可以隨意調整你自己的學習路徑,並且讓大家知道你是如何調整的。
步驟0:熱身
開始學習旅程之前,先回答第一個問題:為什麼使用Python?或者,Python如何發揮作用?
觀看DataRobot創始人Jeremy在PyCon Ukraine 2014上的30分鐘演講,來了解Python是多麼的有用。步驟1:設置你的機器環境
現在你已經決心要好好學習了,也是時候設置你的機器環境了。最簡單的方法就是從http://Continuum.io上下載分發包Anaconda。Anaconda將你以後可能會用到的大部分的東西進行了打包。採用這個方法的主要缺點是,即使可能已經有了可用的底層庫的更新,你仍然需要等待Continuum去更新Anaconda包。當然如果你是一個初學者,這應該沒什麼問題。
如果你在安裝過程中遇到任何問題,你可以在這裡找到不同操作系統下更詳細的安裝說明。
步驟2:學習Python語言的基礎知識
你應該先去了解Python語言的基礎知識、庫和數據結構。Codecademy上的Python課程是你最好的選擇之一。完成這個課程後,你就能輕鬆的利用Python寫一些小腳本,同時也能理解Python中的類和對象。
具體學習內容:列表Lists,元組Tuples,字典Dictionaries,列表推導式,字典推導式。
任務:解決HackerRank上的一些Python教程題,這些題能讓你更好的用Python腳本的方式去思考問題。替代資源:如果你不喜歡交互編碼這種學習方式,你也可以學習PPV課訓練營課程 python入門。這課程系列不但包含前邊提到的Python知識,還包含了一些後邊將要討論的東西。步驟3:學習Python語言中的正則表達式
你會經常用到正則表達式來進行數據清理,尤其是當你處理文本數據的時候。學習正則表達式的最好方法是參加谷歌的Python課程,它會讓你能更容易的使用正則表達式。
任務:做關於小孩名字的正則表達式練習。
如果你還需要更多的練習,你可以參與這個文本清理的教程。數據預處理中涉及到的各個處理步驟對你來說都會是不小的挑戰。
步驟4:學習Python中的科學庫—NumPy, SciPy, Matplotlib以及Pandas
從這步開始,學習旅程將要變得有趣了。下邊是對各個庫的簡介,你可以進行一些常用的操作:
?根據NumPy教程進行完整的練習,特別要練習數組arrays。這將會為下邊的學習旅程打好基礎。
?接下來學習Scipy教程。看完Scipy介紹和基礎知識後,你可以根據自己的需要學習剩餘的內容。?這裡並不需要學習Matplotlib教程。對於我們這裡的需求來說,Matplotlib的內容過於廣泛。取而代之的是你可以學習這個筆記中前68行的內容。?最後學習Pandas。Pandas為Python提供DataFrame功能(類似於R)。這也是你應該花更多的時間練習的地方。Pandas會成為所有中等規模數據分析的最有效的工具。作為開始,你可以先看一個關於Pandas的10分鐘簡短介紹,然後學習一個更詳細的Pandas教程。您還可以學習兩篇博客Exploratory Data Analysis with Pandas和Data munging with Pandas中的內容。額外資源:
?如果你需要一本關於Pandas和Numpy的書,建議Wes McKinney寫的「Python for Data Analysis」。
?在Pandas的文檔中,也有很多Pandas教程,你可以在這裡查看。任務:嘗試解決哈佛CS109課程的這個任務。
步驟5:有用的數據可視化
參加CS109的這個課程。你可以跳過前邊的2分鐘,但之後的內容都是乾貨。你可以根據這個任務來完成課程的學習。
步驟6:學習Scikit-learn庫和機器學習的內容
現在,我們要開始學習整個過程的實質部分了。Scikit-learn是機器學習領域最有用的Python庫。這裡是該庫的簡要概述。完成哈佛CS109課程的課程10到課程18,這些課程包含了機器學習的概述,同時介紹了像回歸、決策樹、整體模型等監督演算法以及聚類等非監督演算法。你可以根據各個課程的任務來完成相應的課程。
額外資源:
?如果說有那麼一本書是你必讀的,推薦Programming Collective Intelligence。這本書雖然有點老,但依然是該領域最好的書之一。
?此外,你還可以參加來自Yaser Abu-Mostafa的機器學習課程,這是最好的機器學習課程之一。如果你需要更易懂的機器學習技術的解釋,你可以選擇來自Andrew Ng的機器學習課程,並且利用Python做相關的課程練習。?Scikit-learn的教程
任務:嘗試Kaggle上的這個挑戰
步驟7:練習,練習,再練習
恭喜你,你已經完成了整個學習旅程。
你現在已經學會了你需要的所有技能。現在就是如何練習的問題了,還有比通過在Kaggle上和數據科學家們進行競賽來練習更好的方式嗎?深入一個當前Kaggle上正在進行的比賽,嘗試使用你已經學過的所有知識來完成這個比賽。
步驟8:深度學習
現在你已經學習了大部分的機器學習技術,是時候關注一下深度學習了。很可能你已經知道什麼是深度學習,但是如果你仍然需要一個簡短的介紹,可以看這裡。
我自己也是深度學習的新手,所以請有選擇性的採納下邊的一些建議。deeplearning.net上有深度學習方面最全面的資源,在這裡你會發現所有你想要的東西—講座、數據集、挑戰、教程等。你也可以嘗試參加Geoff Hinton的課程,來了解神經網路的基本知識。
附言:如果你需要大數據方面的庫,可以試試Pydoop和PyMongo。大數據學習路線不是本文的範疇,是因為它自身就是一個完整的主題。
原文鏈接:Python學習路線圖
未經許可 嚴禁轉載
推薦閱讀:
※為什麼那麼多牛人成天在研究討論演算法,系統自動推薦的東西還是不能令人滿意呢?
※《R語言實戰》第四部分第十五章-時間序列學習筆記(I)
※plyr包
※為什麼你很努力的上班,卻還是當不了公司高管?
※我用Excel做了一個美國颶風的動效軌跡圖!