CTR預估系列一覽表
01-28
- 本篇作為目錄頁,希望可以幫助到大家快速找到希望了解的章節;
- 感謝大家一直以來的支持和幫助,有任何意見或建議可留言或私信等交流討論;
- CTR預估作為一個生命力頑強且不斷發展的領域,歡迎各位老師指點雅正。
關於CTR預估系列:
本系列脫胎於外講的系列講稿,在組織文章方面基於如下幾點考慮:
- 我們在工作中發現,很多同學對於基礎模型的一些細節並不是非常了解,而這些細節可能會影響CTR策略的實施和調優。所以,我們在對主流演算法的介紹中會穿插一些基礎要點的理解與推導、內涵與外延;
- 有些知識點本身對於CTR預估的應用關係不大,但對於完整地理解問題有幫助。對於這部分相對不緊密的部分,我們會用各類「Aside篇」來說明表示;
- CTR預估領域本身是一個發展中的領域,創新點眾多;對於相對成熟的細分領域,我們會盡量概括並給出綱要;部分概括和綱要會更重視整體的流轉,為便於理解而酌情放棄一些細節。
- 一些子領域中,各家觀點相左;這裡會列舉各家觀點,對於相對重要的部分,會給出筆者這邊的實驗結果。
本系列的文章預計會寫40~60篇,從模型側、特徵側、特徵工程、評估、工程&並行化、監控、問題追蹤等角度相對詳細的闡述CTR預估的各個方面。
CTR 系列的框架和目錄:
0. 問題描述和主要解法
- CTR預估[一]: Problem Description and Main Solution
1. 模型側
模型側總圖
- Logistic Regression
- Naive LR及LR和統計的關係
- LR的正則化
- LR的Bias及其運用
- LR的Model擴展-MLR
- Factorization Machine
- FM:理論(margin,objective)和實踐
- FM的Model擴展-FFM/BFM/SFM(待填坑)
- GBDT
- GBDT: Preliminary - bagging&boosting, bias&variance
- GBDT: Preliminary - 參數空間優化和函數空間優化
- GBM和XgBoost
- Aside: Random Forest
- GBDT Encoder
- GBDT Encoder
- Deep CTR(待填坑)
- Online Learning(待填坑)
- Reinforcement Learning(待填坑)
2. 特徵工程
(待填坑)
3. 特徵側
(待填坑)
4. 評估
(待填坑)
5. Model Debug, Monitor and Online Predicting
(待填坑)
Reference (整理ing.)
- Papers
- [LR-CTR] Predicting Clicks- Estimating the Click-Through Rate for New Ads by _Microsoft_2007_WWW
- [MLR]Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction
- [FM]Factorization Machines
- [FM-FTRL]Factorization Machines with Follow-The-Regularized-Leader for CTR prediction in Display Advertising
- [FM-FFM]Field-aware Factorization Machines for CTR Prediction
- [FM-FFM]Field-aware Factorization Machines in a Real-world Online Advertising System
- [FM-BFM] Bayesian Factorization Machines
- [FM-SFM] Sparse Factorization Machines for Click-through Rate Prediction
- [GBDT Encoder]Practical Lessons from Predicting Clicks on Ads at Facebook
- [FE]Position-Normalized Click Prediction in Search Advertising.
- [FE]Click Through Rate Estimation for Rare Events in Online Advertising
- [FE]SFP-Rank: Significant Frequent Pattern Analysis for Effective Ranking
- [GBDT-GBM]greedy function approximation a gradient boosting machine
- [GBDT-XgBoost]XGBoost: A Scalable Tree Boosting System
- [GBDT-fastRGF]Learning Nonlinear Functions Using Regularized Greedy Forest
- [DNN-Deep CTR]Deep CTR Prediction in Display Advertising
- [DNN-Deep FM] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
- [DNN-WnD]Wide & Deep Learning for Recommender Systems
- [DNN-FNN]Deep Learning over Multi-field Categorical Data
- [Feature]Image Feature Learning for Cold Start Problem in Display Advertising
- [Feature]Multimedia Features for Click Prediction of New Ads in Display Advertising
- [Feature]The Impact of Visual Appearance on User Response in Online Display Advertising
- [Feature]Color Harmonization
- [Feature]Measuring colourfulness in natural images
- [Feature]Natural color image enhancement Natural color image enhancementand evaluation algorithm based on and evaluation algorithm based onhuman visual system human visual system, 2006
- Blogs
- Lazy Sparse Stochastic Gradient Descent for Regularized Mutlinomial Logistic Regression
- Regularized Regression A Bayesian point of view
- Logistic Regression and Odds Ratio:Logistic回歸分析和比值比
- FM:FM lecture by CMU
- Field-aware Factorization Machines
- 深入FFM原理與實踐
- 程序化廣告交易中的點擊率預估
- 機器學習中的數據清洗與特徵處理綜
- 用戶在線廣告點擊行為預測的深度學習模型
- Deep Learning over Multi-field Categorical Data
- 第四範式聯合創始人陳雨強:機器學習在工業應用中的新思考
- kaggle-2014-criteo Idiot』s
- CTR預估中GBDT與LR融合方案
- Books
- The Elements of Statistical Learning
推薦閱讀:
※CTR預估[二]: Algorithm-Naive Logistic Regression
※CTR預估[九]: Algorithm-GBDT: Boosting Trees
※計算廣告和機器學習的興起
※SSP能夠給內容商帶來的好處有哪些?與AD Network的本質區別是什麼?