Fefferman-Graham Expansion

In this note, we will review some basic stuff regarding Fefferman-Graham expansion which is always used to obtain quantum anomaly, central charges and counterterm. We mainly focus on Einstein theory to give the basic idea.

1. FG Expansion

For d+1 Einstein theory, i.e.

L=sqrt{-G}(R+dfrac{d(d-1)}{l^2})

We have ansatz for solution in the form of

ds^{2}=G_{ij}dx^{i}dx^{j}=dfrac{l^2}{4}rho^{-2}drho^{2}+rho^{-1}g_{ij}dx^{i}dx^{j}

Its obvious we have

Gamma^{rho}_{rhorho}=-dfrac{1}{rho}, Gamma^{rho}_{ij}=dfrac{2}{l^2}(g_{ij}-rho g_{ij}), Gamma^{i}_{rho j}=dfrac{1}{2}(-dfrac{1}{rho}delta^{i}_{j}+g_{kj}g^{ik})

Therefore Einstein equation reads (To draw reference for most of basic work on this subject[1], we adopted conventions R_{munu}=Gamma^{sigma}_{sigmanu,mu}+cdotcdotcdot , which is actually opposite to our custom.)

g_{ij}+dfrac{1}{2}(g^{lk}g_{lk}-dfrac{d-2}{rho})g_{ij}-dfrac{1}{2rho}g^{lk}g_{lk}g_{ij} -g^{kl}g_{k(i}g_{j)l}+dfrac{l^2}{2rho}hat{R}_{ij}=0, dfrac{1}{2}g^{kl}g^{ij}g_{li}g_{kj}-g^{ik}g_{ik}=0, D_{[i}g_{j]k}=0 where prime means derivative for rho, D_{i} is covariant derivative for  g_{ij} and  hat{R}_{ij} is Ricci tensor of g_{ij} .

We are interested in solutions behaviour as rhorightarrow0 , therefore we focus on series solution.

According to differential equation theory, for any second order differential equation

y(rho)+p(rho)y(rho)+q(rho)y(rho)=0 ,

Index equation calls

alpha(alpha-1)+a_{0}alpha+b_{0}=0, where~~p=a_{0}rho^{-1}+cdotcdotcdot ,q=b_{0}rho^{-2}+cdotcdotcdot

Call its two solutions are  alpha_{1} and alpha_{2}

  1. When alpha_{1}-alpha_{2} is not an integer, general solution is just ordinary Taylor series.
  2. When alpha_{1}-alpha_{2} is an integer, general solution must contain Log term in addition to Taylor series.

Note for Einstein equation

a_{0}=-dfrac{d-2}{2},b_{0}=0

then alpha_{1}-alpha_{2}=dfrac{d}{2}

  1. When d is odd, solution is g_{ij}=g^{(0)}_{ij}+rho g^{(2)}_{ij}+cdotcdotcdot
  2. When d is even, previous solution breaks down at  rho^{d/2} , instead we have

g_{ij}=g^{(0)}_{ij}+rho g^{(2)}_{ij}+cdotcdotcdot+rho^{d/2}g^{(d)}_{ij}+rho^{d/2}bar{g}^{(d)}Log(rho)+cdotcdotcdot

This is called FG expansion.

2. Coefficients

We are allowed to obtain coefficients  g^{(n)}_{ij} order by order.

We denote

 g^{lk}g_{lk}:=A=A^{(0)}+rho A^{(1)}+cdotcdotcdot, g^{kl}g_{k(i}g_{j)l}:=B=B^{(0)}+cdotcdotcdot

D_{i}=D^{(0)}_{i}+cdotcdotcdot, hat{R}_{ij}=hat{R}^{(0)}_{ij}+rho hat{R}^{(1)}_{ij}+cdotcdotcdot

where D^{(0)}_{ij} is covariant derivative for g^{(0)}_{ij} .

Substitute them back, rearrange order by order, we could have access to obtaining coefficients.

2.1. First Coefficient

The first coefficient is pretty easy, we have

g^{(2)}_{ij}=dfrac{l^2}{d-2}(hat{R}^{(0)}_{ij}-dfrac{1}{2(d-1)}hat{R}^{(0)}g^{(0)}_{ij})

where hat{R}_{ij}^{(0)} and hat{R}_{ij}^{(0)} is Ricci tensor and scalar curvature of g^{(0)}_{ij} .

2.2. Second Coefficient

The second one is far more cumbersome, and we would like to exphibit details over this subsection.

According to Einstein equation, O(1) term equation gives rise

g^{(4)}_{ij}=dfrac{1}{4-d}(dfrac{1}{2}A^{(1)}g^{(0)}_{ij}+B^{(0)}_{ij}+dfrac{l^2}{2}hat{R}^{(1)}_{ij})

Its naturally to find out

A^{(1)}=-dfrac{1}{2}B^{(0)}

where B^{(0)} is trace of B^{(0)}_{ij} .

Furthermore, its simple to get B^{(0)}_{ij}

B^{(0)}_{ij}=dfrac{l^{4}}{(d-2)^{2}}(hat{R}^{(0)}_{ki}hat{R}^{(0)k}_{j}+dfrac{1}{4(d-1)^{2}} hat{R}^{(0)2}g^{(0)}_{ij}-dfrac{1}{d-1}hat{R}^{(0)}hat{R}^{(0)}_{ij}), B^{(0)}=dfrac{l^{4}}{(d-2)^{2}}(hat{R}^{(0)ki}hat{R}^{(0)}_{ki}-dfrac{3d-4}{4(d-1)^{2}}hat{R}^{(0)2})

hat{R}^{(1)}_{ij} is more tricky.

hat{R}^{(1)}_{ij}=-dfrac{1}{2}D^{(0)}_{i}D^{(0)}_{j}g^{(0)kl}g^{(2)}_{kl}-dfrac{1}{2}D^{(0)}_{k}D^{(0)k}g^{(2)}_{ij} +g^{(0)kl}D^{(0)}_{k}D^{(0)}_{(i}g^{(2)}_{j)l}

Substitute g^{(2)}_{ij} , and note the last term requires further simplification: Exchange D~~D to D^{(0)k}hat{R}^{(0)}_{ki}=D^{(0)}_{i}hat{R}^{0}

The outcome is

hat{R}^{(1)}_{ij}=l^{2}(dfrac{1}{4(d-1)}D^{(0)}_{i}D^{(0)}_{j}hat{R}^{(0)}-dfrac{1}{d-2}( D^{(0)}_{k}D^{(0)k}hat{R}^{(0)}_{ij}-dfrac{1}{2(d-1)}D^{(0)}_{k}D^{(0)k}hat{R}^{(0)}g^{(0)}_{ij}) +dfrac{1}{d-2}hat{R}^{(0)}_{ikjl}hat{R}^{(0)kl}-dfrac{1}{d-2}hat{R}^{(0)}_{ik}hat{R}^{(0)k}_{j})

Substitute back, and straighten it up, we end up with

g^{(4)}_{ij}=dfrac{l^4}{d-4}(-dfrac{1}{8(d-1)}D^{(0)}_{i}D^{(0)}_{j}hat{R}^{(0)}+dfrac{1}{4(d-2)}( D^{(0)}_{k}D^{(0)k}hat{R}^{(0)}_{ij}-

-dfrac{1}{2(d-1)}D^{(0)}_{k}D^{(0)k}hat{R}^{(0)}g^{(0)}_{ij}) -dfrac{1}{2(d-2)}hat{R}^{(0)}_{ikjl}hat{R}^{(0)kl}+

dfrac{d-4}{2(d-2)^{2}}hat{R}^{(0)}_{ik}hat{R}^{(0)k}_{j} +dfrac{1}{(d-1)(d-2)^{2}}hat{R}^{(0)}hat{R}^{(0)}_{ij}+dfrac{1}{4(d-2)^{2}}hat{R}^{(0)kl}hat{R}^{(0)}_{kl} g^{(0)}_{ij}-dfrac{3d}{16(d-1)^{2}(d-2)^{2}}hat{R}^{(0)2}g^{(0)}_{ij}) Moreover, we have

Tr(g^{(4)})=dfrac{1}{4}Tr(g^{(2)2})

3. Counterterm

To make variation principle well-defined, we have to add Hawking-Gibbons term

S=-dfrac{1}{16pi}int_{M}d^{d+1}xsqrt{-G}(R+dfrac{d(d-1)}{l^2})+dfrac{1}{8pi}int_{partial M}d^{d}xsqrt{-h}K

where h_{ij} is induced metric on $partial M$ and $K$ is trace of extrinsic curvature.

Substitute metric ansatz

S=dfrac{d}{16pi l}int d^{d}xint_{epsilon}^{infty}drhorho^{-d/2-1}sqrt{g}+dfrac{1}{8pi}int d^{d}x rho^{-d/2}(-dfrac{d}{l}sqrt{g}+dfrac{2rho}{l}partial_{rho}sqrt{g})_{rho=epsilon}

where epsilon is UV cutoff to regularize the whole theory.

After substituting series solution, divergent part appears clearly

S_{div}=dfrac{1}{16pi}int d^{d}xsqrt{g^{(0)}}(a_{0}epsilon^{-d/2}+a_{2}epsilon^{-d/2+1}+a_{4}epsilon^{-d/2+2} cdotcdotcdot+a_{d-1}epsilon^{-1/2})

for d odd

S_{div}=dfrac{1}{16pi}int d^{d}xsqrt{g^{(0)}}(a_{0}epsilon^{-d/2}+a_{2}epsilon^{-d/2+1}+a_{4}epsilon^{-d/2+2} cdotcdotcdot+a_{d-2}epsilon^{-1}+a_{d}Log(epsilon))

for d even, with

a_{0}=dfrac{2(2-d)}{l},a_{2}=-dfrac{(d-1)(d-4)}{(d-2)l}Tr(g^{(2)}), a_{4}=dfrac{d^{2}-9d+6}{4(d-4)l}(Tr(g^{(2)2})-(Tr(g^{(2)}))^{2})

for dneq 4~~and~~2.

a_{2}=-dfrac{1}{l}Tr(g^{(2)})

for d=2

a_{4}=dfrac{1}{2l}(Tr(g^{(2)2})-(Tr(g^{(2)}))^{2})

for d=4

The counterterm of this system to cancel the divergence is therefore

S_{ct}=-dfrac{1}{16pi}int d^{d}xsqrt{g^{(0)}}(a_{0}epsilon^{-d/2}+a_{2}epsilon^{-d/2+1}+a_{4}epsilon^{-d/2+2} cdotcdotcdot+a_{d-1}epsilon^{-1/2})

for odd d

S_{ct}=-dfrac{1}{16pi}int d^{d}xsqrt{g^{(0)}}(a_{0}epsilon^{-d/2}+a_{2}epsilon^{-d/2+1}+a_{4}epsilon^{-d/2+2} cdotcdotcdot+a_{d-2}epsilon^{-1}+a_{d}Log(epsilon))

for even d .

Note all terms are covariant except for Log , if it exists. To see this, we would like to express g^{(0)} and a_{n} in terms of covariant Ricci tensor and scalar curvature of h .

Firstly, we have to note

R_{ij}=rho hat{R}_{ij}

where R_{ij} is for h_{ij} .

Up to order we are interested, at cutoff epsilon , we have

sqrt{g^{(0)}}=epsilon^{d/2}sqrt{-h}(1-dfrac{1}{2}epsilon Tr(g^{(2)})+dfrac{1}{8} epsilon^{2}((Tr(g^{(2)}))^{2}+Tr(g^{(2)2}))), hat{R}^{(0)}=hat{R}+rhohat{R}^{ij}g^{(2)}_{ij}

Therefore

Tr(g^{(2)})=dfrac{l^{2}}{epsilon}dfrac{1}{2(d-1)}(R+dfrac{l^{2}}{d-2}(R_{ij}R^{ij}-dfrac{1}{2(d-1)} R^{2})

Tr(g^{(2)2})=dfrac{l^{4}}{epsilon^{2}}dfrac{1}{(d-1)^{2}}(R_{ij}R^{ij}+dfrac{4-3d}{4(d-1)^{2}}R^{2})

We end up with

S_{ct}=-dfrac{1}{16pi l}int_{partial M}d^{d}xsqrt{-h}(2(1-d)+dfrac{l^2 R}{d-2} +dfrac{l^{4}(dR^{2}-4(d-1)R_{ij}R^{ij})}{4(d-4)(d-2)^{2}(d-1)}+cdotcdotcdot)

for odd d

S_{ct}=-dfrac{1}{16pi l}int_{partial M}d^{d}xsqrt{-h}(2(1-d)+dfrac{l^2 R}{d-2} +dfrac{l^{4}(dR^{2}-4(d-1)R_{ij}R^{ij})}{4(d-4)(d-2)^{2}(d-1)}+cdotcdotcdot+a_{d}Log(epsilon)epsilon^{d/2}l)

for even d . Note only for d>2 , l^{2} term appears; only for d>4 , l^{4} term appears.

Note for odd d , all terms are covariant and thus independent of conformal coordinates. However, for even d , Log term does depend on conformal coordinates, which will give rise to Weyl anomaly as one transforms conformal coordinates. We will discuss this in next section.

The total action is thus

S_{renor}=S+S_{ct}

4. Trace Anomaly

Its natural to read holographic energy momentum tensor

T_{ij}=dfrac{2}{sqrt{g^{(0)}}}dfrac{delta S}{delta g^{(0)ij}}

Or, more directly

 delta S_{renor}=dfrac{1}{2}int_{partial M}sqrt{g^{(0)}}T^{ij}delta g^{(0)}_{ij}

To extract Weyl anomaly (or trace anomaly), we consider conformal transformation (Weyl transformation)

delta h_{ij}=Omega h_{ij}~~,~~deltaepsilon=-Omegaepsilon

delta S_{renor}=dfrac{1}{2}int_{partial M}sqrt{g^{(0)}}T_{i}^{i}Omega

For odd d , delta S=0 , hence no anomaly.

For even d , conformal transformation gives

delta S_{renor}=dfrac{1}{16pi}int_{partial M}sqrt{g^{(0)}}a_{d}Omega

One may easily know

A=T_{i}^{i}=dfrac{1}{8pi}a_{d}

4.1. CFT_{2}

We consider case of d=2 .

A=-dfrac{l}{16pi}hat{R}^{(0)}

Writing anomaly in the form

A=-dfrac{c}{24pi}hat{R}^{(0)}

where c is central charge, were allowed to obtain

c=dfrac{3l}{2}

4.2. CFT_{4}

For d=4 , we write the anomaly as

A=dfrac{c}{16pi^{2}}I_{4}-dfrac{a}{16pi^{2}}chi_{4}

where I_{4} is

I_{4}=hat{C}^{(0)ijkl}hat{C}^{(0)}_{ijkl}=hat{R}^{(0)ijkl}hat{R}^{(0)}_{ijkl}-2hat{R}^{(0)ij}hat{R}^{(0)}_{ij}+dfrac{1}{3}hat{R}^{(0)2}

And chi_{4} is Euler density in $4$ dimension

chi_{4}=hat{R}^{(0)ijkl}hat{R}^{(0)}_{ijkl}-4hat{R}^{(0)ij}hat{R}^{(0)}_{ij}+hat{R}^{(0)2}

With our previous section

A=dfrac{l^{3}}{64pi}(hat{R}^{(0)ij}hat{R}^{(0)}_{ij}-dfrac{1}{3}hat{R}^{(0)2})

We read

c=a=dfrac{l^3pi}{8}


推薦閱讀:

隨便學學Ads/CFT【3】
為什麼神羅天征沒有反作用力啊?
如何理解微分散射截面?
根據熱力學第二定律,宇宙的總熵在持續增加。但是為什麼又存在生命之類負熵的系統呢?

TAG:理论物理 | 广义相对论 | 物理学 |