《Machine Learning for Designers》解構腦圖
導讀:如下是《Machine learning for Designers》的解構腦圖,原書2016年於OREILLY首次出版。作者Patrick Hebron是紐約大學交互通信項目(ITP)的特聘教授,專註於機器學習、人工智慧、計算機視覺等等領域的應用性研究。
原書電子版及腦圖下載
百度雲: https://pan.baidu.com/s/1eSzhXM6 密碼: c98x
更多信息
線上課程
「Machine Learning for Musicians and Artists」 taught by Rebecca Fiebrink:
https://www.kadenze.com/courses/machine-learning-for-musiciansand-artists/info「Machine Learning」 taught by Andrew Ng:
Machine Learning | Coursera「Neural Networks for Machine Learning」 taught by Geoffrey Hinton:
Neural Networks for Machine Learning | Coursera機器學習 API
IBM Watson: IBM Watson
Amazon Machine Learning: Amazon Machine Learning - Predictive Analytics with AWS
Google Prediction API: https://cloud.google.com/prediction
Microsoft Azure: Directory of Azure Cloud Services | Microsoft Azure
BigML: BigML is Machine Learning made easy
ClarifAI: Image & Video Recognition API
開源機器學習工具
TensorFlow (C++, Python): https://www.tensorflow.org
Torch (C, Lua): Torch | Scientific computing for LuaJIT.
Caffe (C++): Caffe | Deep Learning Framework
cuDNN (C++, CUDA): NVIDIA cuDNN
Theano (Python): Welcome - Theano 0.9.0 documentation
Scikit-learn (Python): http://scikit-learn.org
Shogun (C++, Python, Java, Lua, others): http://www.shoguntoolbox.org
Spark MLlib (Python, Java, Scala): MLlib | Apache Spark
Deeplearning4j (Java, Scala): Open-source, Distributed Deep Learning for the JVM
數據集
UCI Machine Learning Repository: UCI Machine Learning Repository
MNIST Database of Handwritten Digits: Yann LeCuns Home Page
CIFAR Labeled Image Datasets: Alex Krizhevsky
ImageNet Image Database: http://www.image-net.org
Microsoft Common Objects in Context: Common Objects in Context
編輯:魏啟龍 尹青
相關推薦:
《設計與人工智慧報告》發布 - 知乎專欄
人工智慧&家裝行業:可以賦能設計師的AI才是好AI - 知乎專欄推薦閱讀: