標籤:

材料人專訪John B. Goodenough丨要敢於在交流中坦然暴露出自己的無知

John B. Goodenough(約翰·班寧斯特·古迪納夫)目前為美國德州大學奧斯汀分校,機械工程系教授,著名固體物理學家,是鈷酸鋰、錳酸鋰和磷酸鐵鋰正極材料的發明人,鋰離子電池的奠基人之一,被業界稱為「鋰電之父」。他對材料科學與技術,特別是鋰離子電池領域做出了重要貢獻。通過研究化學、結構以及固體電子/離子性質之間的關係來設計新材料解決材料科學問題。更多介紹請見文末!

近日,鋰電池之父,美國德州大學奧斯汀分校機械工程系教授John B. Goodenough接受了材料人的採訪,我們對近期教授的幾項工作以及他對鋰電池發展和中國科研的看法做了採訪,以下是詳細內容:

材料人網:您如何看待鋰離子電池的未來?它會被您的最新研究成果取代嗎?

JBG:我認為目前的鋰離子電池三年內會被不產生鋰枝晶的鋰金屬電池取代,代替我們現在用的石墨負極鋰離子電池。

材料人網:超級電池在應用到電動車之前,還需做出哪些改進?

JBG:電動車用電池首先必須是安全價廉的,而且要高倍率充放電的情況下體積能量密度高、使用壽命長。我認為Braga玻璃電解質能夠實現所有以上願景,但是高壓下低電阻正極材料尚處於驗證和測試階段。此外,以在集流體上沉積鋰金屬做負極的電池容量需要進一步的評估。

材料人網:您的超級電池會成為您職業生涯最後的研究成果嗎?

JBG:我希望我還能再干幾年,我們還有很多東西需要探索。

材料人網:在您研究出陰極之後,您認為還要多久才能實現電池的大規模生產?您可否預見一下未來的困難?

JBG:我認為三年內電池就能實現大規模量產。

材料人網:您94歲高齡仍在努力工作,您的動力是什麼?

JBG:科研探索真的十分有趣,21世紀仍面臨著很多毀滅性的挑戰需要被戰勝。

材料人網:您是怎麼開始電池技術相關的研究的?

JBG:我是在1969年接觸到電化學 跟電池的,當時我應邀負責福特公司1967年發明的鈉硫電池項目,就是使用固體陶瓷電解質和熔化電極的那種電池。我非常想找到一種比福特鈉-β-鋁更好的鈉固體電解質,通過與Henry Hong的合作,我們發明了鋯磷硅酸鹽,也就是現在的NASICON鈉超離子導體。之後在1970年爆發了第一次能源危機,美國國會認為我的研究與空軍實驗室的要求不符,因此我決定放棄過渡金屬氧化物轉而研究能源材料,並接受了去英國牛津大學當無機化學教授的邀請。

材料人網:您是怎樣激發學生創造力的?

JBG:並不是簡單地說是我在如何啟發學生,而是作為領導,必須對他的研究領域充滿熱情,不能因為研究成果而變得自負,要平等地看待每個與他合作的人,當別人取得成功時,要樂意去讚賞他們。我們可能會在學術上是競爭對手,但是在生活中卻不是這樣,要就事論事。

材料人網:您高中是學文科的,本科學的是數學跟物理,研究生又轉學了化學與工程,為什麼您要換專業呢?您的經歷給您的研究帶來了怎樣的幫助?您希望您的學生換專業嗎?

JBG:在二戰之前,我本來是文科生,擇業十分費時。後來二戰爆發,我參了軍,停止了找工作的糾結,也就是這個時候我下定決心,如果有機會讀研,我就要選擇物理專業。在研究生學習期間,我立志要成為固態物理學家而非核物理學家,在畢業時,我意識到我還沒有做好當物理教授的準備,因此我來到了一家工程實驗室工作,這個工作要求我研究怎樣在亞鐵磁的尖晶石中實現B-H磁滯回線,而亞鐵磁的尖晶石是不能像鐵磁合金那樣捲成一個很薄的帶子的。正是這份工作把我帶進了磁學和過度金屬氧化物這個領域,使我產生了學習過度金屬化合物d電子的興趣,這是要與化學家一起工作的。正如我前面說的,在1970年我被迫改變了我的研究興趣,我成了無機化學實驗室的固態化學教授。就在我快從英國退休時, 德克薩斯大學奧斯汀分校邀請我去做工程首席教授,這樣我就有機會繼續我的材料工作了。 我的成果要歸功於機遇,合作,優秀的同事,還有運氣。直覺固然是以經驗為基礎,但是也要聽聽內心的想法,要敢於在同他人的交流之中坦然地暴露出自己的無知,要對別人的想法和生命的意義保持好奇心,這會成為思想的源泉和成功的基礎。我鼓勵學生們謙虛坦然地接受自己,接受成功與失敗。

材料人網:您曾說退休後想去研究神學,為什麼像您一樣的科學家也會相信存在比科學更有力的力量呢?

JBG:我不這麼認為,我覺得神學的力量不及科學。我深信我們應該愛這個我們存在的世界,銘記所有幸運與不幸,敵人與朋友。對自然及其運作的科學探索形成了對萬物以及支撐它的事物的愛。但是我認為有很多東西是不能用數學的語言描述的,我認為隱喻、寓言也蘊藏了豐富的智慧。工程能夠教會我們如何創造,但是我們製造出來的機器是沒有感情的。重要的是我們如何去使用這些機器。如果沒有智慧,我們可能會摧毀環境和社會,有了智慧,我們就能在人口爆炸中生存,並且帶來和諧,而不是帶來敵對。

材料人網:您如何看待中國的電池研究?您能給中國科學家一些建議嗎?

JBG:中國在電池領域取得了令人印象深刻的發展,但是中國的多數研究都集中在如何改進已有技術,缺乏對革新性的技術的關注。我的建議是要找到真正待解決的問題,然後努力去攻克它們,即使是在取得重大成果之前要花很長時間。

材料人網:您從事隨機存取磁存儲器和鋰離子電池兩個領域的研究,那麼您認為哪個領域對當前科技的影響更大?

JBG:首個隨機存取磁存儲器的問世對電子計算機的發展非常重要,即使高速晶體管的發展實現了用小型磁性存儲元件代替,使原磁RAM存儲縮小到辦公室的大小。鋰離子電池實現了微電子的無線化,很多人為了這一發展貢獻了力量。

材料人網:電池能量密度還能再大嗎?您對下一代電池有什麼期望?

JBG:未來幾年電池會取得重大的改進 ,包括電池安全性,價格,能量密度,使用壽命,充放電速度等。我不確定能量密度的改進能否給出個「摩爾定律」,就像計算機輕量化那樣,我不能遇見相似的發展。

英文版如下:

John B. Goodenough Interview with Amber Zhang Cailiaoren.com

Cailiaoren.com: What you think of Lithium-ion batteries』 future? Will they be replaced by your latest achievement?

JBG: Lithium-ion batteries will, I believe, be replaced within three years by lithium batteries with a lithium anode that is plated dendrite-free replacing the graphite-anode of today』s lithium-ion battery.

Cailiaoren.com: What improvements does it need to power electrical cars with the superior battery?

JBG: Powering an electric road vehicle with a rechargeable battery requires a battery that is safe, low-cost with a high volumetric energy density at high rates of charge/discharge and a long cycle life. I believe all that can be accomplished with the Braga glass electrolyte, but the development of a low-resistance at a high-voltage cathode has yet to be verified and needs more testing. Also, the capacity of a cell with plating of a lithium anode on a cathode current collector requires more evaluation.

Cailiaoren.com: Will your Ultra-Efficient New Battery be the end of your career?

JBG: I hope I can work for another few years; we still have ideas needing to be explored.

Cailiaoren.com: How long will it take to make large scale cells after you working out with the cathode? What difficulties can you expect?

JBG: I believe that large-scale batteries can be on the market within three years.

Cailiaoren.com: What drives you to continue working at age 94?

JBG: Scientific exploration is interesting, and the challenges to modern society in the 21rst century need to be addressed to avert catastrophe.

Cailiaoren.com: How did you start battery work?

JBG: My exposure to electrochemistry and battery work came in about 1969 when I was asked to monitor the development at the Ford Motor Company of their invention in 1967 of the sodium-sulfur battery, which uses a solid ceramic electrolyte and molten electrodes. I was challenged to find a better sodium solid electrolyte than the Ford sodium-beta-aluminum; with Henry Hong, we came up with the zirconium phosphosilicate, now referred to as NASICON for sodium (Na) superionic conductor. The first energy crisis in about 1970 and a decision by the U.S. Congress that my fundamental research effort was not appropriate for a laboratory funded by the Air Force made me decide to change my research from the electric properties of transition-metal oxides to energy materials and to accept an offer to be a Professor of Inorganic Chemistry at The University of Oxford in England.

Cailiaoren.com: How do you create a favorable environment to inspire students』 creativity?

JBG: There is no simple answer as to how to inspire students. The leader must be enthusiastic about his field of work, be without an ego while having ideas about research strategies and the interpretation of experimental results, treat those who work with him as equals, and be willing to give credit where it belongs with delight in others』 success. We need to compete against problems, not against people.

Cailiaoren.com: You are an art student in middle school, and got degrees in mathematics, physics, later on you study on chemistry and engineering, why you change your research interests? Do you think your experience is helpful in your research? And do you encourage students to change their fields?

JBG: My home and schooling before World War II was Arts-oriented, and it took me time to find my calling. My time in the U.S. Army during World War II was a break from this struggle, but I had come to the conclusion that if I had the opportunity to go to graduate school on my return to civilian life, I should study Physics. During graduate study, I decided I wanted to be a solid-state rather than a nuclear physicist; and on graduation, I knew I wasn』t prepared to be a professor of physics, so I accepted a job in an engineering laboratory that required how to develop a square B-H hysteresis loop in a ferrimagnetic spinel that could not be rolled into a thin tape as a ferromagnetic alloy. This choice led me into the field of magnetism and transition-metal oxides where I found my calling to study the properties of d electrons in transition-metal compounds, which required working with chemists. As I told you, in 1970 I was forced to change my focus, which led me to accept a position as a solid-state chemistry professor and head of an Inorganic Chemistry Laboratory. That position made me officially a chemist. On approaching retirement from England, I was offered a Chaired Professorship in Engineering at The University of Texas at Austin where I have been given the opportunity to continue working on materials engineering. My research has been guided by opportunities, collaborations with experimentalists, and good fortune. Experience is essential to the development of intuition; but listening to your inner voice, a willingness to expose ignorance with honest questions in dialogue with others and with nature, and a curiosity to understand others and the meaning of life can provide a basis for original thought and fruitful action. I encourage students to accept themselves, their failures, and their successes with humility and yet celebration.

Cailiaoren.com: You once said you want to study theology after retirement, why a scientist believe there are more powerful force than science?

JBG: I don』t believe that theology is a more powerful force than science. I do believe that we should love the creation in which we exist and have our being as well as all people, unfortunate as well as fortunate, antagonists as well as collaborators. The scientific exploration of nature and how it works is a form of loving both creation and those it supports. But I believe there is more to knowledge than what can be expressed in the language of mathematics. I believe personal examples and the art of metaphor and parable communicates the knowledge of wisdom. Engineering provides society with the means to create, but the machines we create are morally neutral. What matters is how we use our machines. Without wisdom, we may destroy our environment and society; with wisdom, we may survive the explosion of human population to bring harmony rather than discord between the different voices of humanity.

Cailiaoren.com: What』s your opinions on china』s battery research? What』s your suggestion to Chinese researchers?

JBG: The Chinese effort in battery research is impressive, but most of its focus has been on doing better what has been tried rather than focusing on radical new ideas. My advice is to identify what are the real problems that need to be solved and focus on these even if these problems require a long road of small steps before the mountaintop is reached.

Cailiaoren.com: You worked on the development of both random access magnetic memory and li-ion rechargeable batteries. Which would you say made the biggest impact on technology today?

JBG: Realization of the first random-access memory was an important step in the development of the digital computer even though the development of fast transistors allowed replacement of the magnetic memory element with an element that can be miniaturized to give more memory in a shirt pocket than the original magnetic RAM memory could fit into an office room. The Li-ion battery enabled the microelectronics to become wireless. The combination has empowered the average citizen, and many people contributed to this development.

Cailiaoren.com: Are we reaching the limits of battery energy density? What are your expectations on next generation batteries?

JBG: In the next few years, we should see a big step improvement in battery safety, cost, energy density, cycle life, and charge/discharge rates. I do not know whether improvements in energy density can provide a Moore』s law over many years like the miniaturization of the digital computer, but I do not foresee a similar progression.

【採訪後記】

三句話總結此次訪談重點:

1. 保持好奇心和求知慾。

2.人生處處存在著變化和機遇,不變的是追求真理與科學研究的興趣。

3.多做基礎性和原創性研究,多做可以解決實際問題的研究。

本文由材料人編輯整理,感謝材料人海外專家團隊指導支持。

研究方向:過渡金屬氧化物、鋰離子電池、燃料電池、氧滲透膜。詳細的說:他的研究團隊生長單晶並且合成新型陶瓷材料。進行化學和結構表徵以及高溫、高壓、元素分析等各種基礎研究。從事能量儲能和轉換材料研究,高溫超導超、電子由局部變為流動時的超巨磁阻現象的機理研究,還研究開發了中溫固態氧化物燃料電池和氧滲透膜。

教授主要履歷

1922年7月25日,John B. Goodenough在美國出生,父母原在德國耶拿市。

1943年,在耶魯大學獲得了數學系的文學士學位,期間為科學哲學所吸引決定攻讀物理方向研究生。

二戰期間,曾作為氣象專家在美國陸軍航空部隊工作,1948年退役。

1951-1952年,在美國西屋電氣公司任研發工程師。

1951年在芝加哥大學獲得理學碩士學位,1952年獲得固態物理博士學位,師從Clarence Zener(齊納二極體發明者,諾獎得主,見後續專題:材料、仙童與矽谷)。

1952-1976年,在MIT的林肯實驗室進行關於內存的材料物理研究,這是關於Mn3+有關的研究,同時接觸到了Li離子在固體中的遷移,隨後開始固態陶瓷的基礎研究。期間首次發現了鐵氧體磁芯的電流重合記憶功能,被稱為Goodenough-Kanamori規律,這一發現對電子計算機的發展極為關鍵,並且對磁性材料以及電子材料的研究起到引導作用,也正是在這個時期寫了《磁性鍵與化學鍵》和《過渡金屬氧化物》兩本書。並在此時接觸並深入研究了鋰離子在固體中的遷移規律。

1976年,進入牛津大學任教授並作為無機化學研究負責人,開始了固體化學研究,主要研究可用於能量轉換的新材料,提出了鹼金屬離子固態電解質的構架結構概念並且獲得了以尖晶石層狀結構氧化物作為陰極的鋰離子二次電池的基本專利,期間還從事太陽能轉換光電解和燃料電池催化電極方面的研究。

1980年和SONY公司合作開發出了基於碳材料負極和鋰鈷氧LiCoO2材料正極的可充電離子電池,也就是目前廣泛採用的鋰離子電池技術,但是LiCoO2受限於有毒、鈷資源稀缺等因素,急需替代材料。

1982年伊利諾伊理工大學(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman發現鋰離子具有嵌入石墨的特性,首個可用的鋰離子石墨電極由貝爾實驗室試製成功,從此石墨代替金屬鋰作為鋰電池負極,從此正極材料成為鋰電池突破的主要瓶頸。

1983年M.Thackeray和Goodenough等人發現錳尖晶石是優良的正極材料,具有低價、穩定和優良的導電、導鋰性能。其分解溫度高,且氧化性遠低於鈷酸鋰,即使出現短路、過充電,也能夠避免了燃燒、爆炸的危險,大大提高安全性。

1986年從牛津大學退休後,受聘於美國德州大學奧斯汀分校機電工程學院擔任教授,成為終身教授,擔任美國德州大學奧斯汀分校材料科學與工程中心負責人,研發了固體氧化物燃料電池(SOFC)的新型電解質和電極材料,並且對電子從集中變為流動的交互行為物理現象做出了解釋。

1989年,A.Manthiram和J.Goodenough發現採用聚合陰離子的正極將產生更高的電壓。

1997年開發了低成本的磷酸鐵鋰LiXFePO4正極材料,加快了鋰離子電池的商業化。磷酸鐵鋰是目前安全性最高的正極材料,且充放電性能、廉價、對環境無污染,具有優異的電池循環壽命、安全性、低自放電(庫存存放壽命非常長),這使得傳統鎳氫、鎳鎘電池黯然失色。其廣泛應用於手機等無線便攜設備、電動工具、混合動力汽車、小型電動車以及新能源系統儲能,已成為當前主流的正極材料,它對全球經濟產生了重要影響,並減少了溫室氣體的排放。

榮譽稱號:

美國物理學會會員

美國化學學會會員

美國國家工程院院士

美國國家科學院院士

英國皇家化學學會外籍院士

印度科學院外籍院士

日本物理學會會員

美國國家材料諮詢會成員

美國科學促進協會會員

美國國家研究委員會,固態科學小組成員

榮譽獎項:

波爾多大學,榮譽博士學位(1967)

英國皇家化學學會,百年講師(Centenary Lecturer)(1976)

英國皇家化學學會,固態化學獎,(1980)

Von Hippel 獎,美國材料研究學會(1989)

賓夕法尼亞大學卓越成就獎(1996)

John Bardeen 獎,採礦、冶金和材料協會(1997)

Olin Palladium獎,美國電化學學會(1999)

日本國際獎,國際科學技術財團(2001)【PS:該獎項授予在科學技術方面取得了獨創性的和飛躍性的成果,對科學技術的發展,人類的和平與繁榮做出了重大貢獻的人。獲獎者多為世界有名的科學家。獲獎者可以得到獎狀,獎牌及5000萬日元的獎金,只授予在世人物。】

美國費米獎,美國能源部(2009)【PS:費米獎1954年為紀念美籍義大利科學家恩里克·費米(Enrico Fermi)而設立,是由美國政府頒發的最負盛名的科技類獎項之一】

美國國家科學獎章, 美國國家科學獎章委員會(2013)【PS:評選的唯一標準是獲獎人的學術水平,獲獎者一般是美國某一領域具有重要影響的科學家。到目前為止,一共只有498人科學家獲此殊榮,先後有91人次獲諾貝爾物理、化學、生理/醫學、經濟學獎(不含和平獎2人),比例為18.67%。這91人中,大部分科學家都是先獲得諾貝爾獎然後再獲美國國家科學獎的,但是有23人獲得美國國家科學獎比諾貝爾獎早;還有6人同年斬獲雙獎。】

查爾斯·斯塔克·德拉普爾獎(Charles Stark Draper Prize),美國國家工程院【PS: 美國工程學界最高獎項之一,每二年頒發一次,被認為是「工程學界的諾貝爾獎」("Nobel Prizes of Engineering")之一。該獎獎予推進工程學及工程學教育發展進步的候選人。】

德州大學機械工程系榮譽工程師

電氣和電子工程師協會獎

部分學術論文:

1.Mizushima, K., Jones, P. C., Wiseman, P. J., and Goodenough, J. B., "LixCoO2 (0 < x < 1): A New Cathode Material for Batteries of High Energy Density," Materials Research Bulletin 15, 783-799 (1980).

2.Thomas, M. G. S. R, Bruce, P. G., and Goodenough, J. B., "Lithium Mobility in the Layered Oxide Li(1-x)CoO2," Solid State Ionics, 17 (1), 13-19 (1985).

3. Thackeray, M. M., David, W. I. F., Bruce, P. G., and Goodenough, J. B., "Lithium Insertion Into Manganese Spinels," Materials Research Bulletin 18, 461-472 (1983)

4.Padhi, A. K., Nanjundaswamy, K. S., and Goodenough, J. B., "Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries," Journal Electrochemical Society 144, 1188-1194 (1997).

5. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenough, J. B., "Mapping of Transition-Metal Redox Couples in Phosphates with NASICON Structure by Lithium Intercalation," Journal Electrochemical Society 144, 2581-2586 (1997).

6. Goodenough, J.B. "Rechargeable Batteries: Challenges Old and New" Journal of Solid State Electrochemistry 16 2019-2029, (2012).

7. Li, Y., Xu, M.W., and Goodenough, J.B., "Electrochemical Performance of Ba2Co9O14 + SDC Composite Cathode for Intermediate-Temperature Solid Oxide Fuel Cells" J. of Power Sources 298 40-43, (2012).

8. Goodenough, J.B. "Reflections on Sixty Years of Solid State Chemistry" "Zeitschrift fur Anorganische und Allgemeine Chemie" 638 1-5 (2012).

書籍:

Goodenough, J. B., Magnetism and the Chemical Bond, Interscience Monographs on Chemistry, Inorganic Chemistry Section, F. A. Cotton, ed., Vol. I (Interscience-Wiley, New York 1963).

Goodenough, J. B., Les oxydes des métaux de transition (Gauthier-Villars, Paris, 1973).

Huang, K. and Goodenough, J. B., Solid Oxide Fuel Cell Technology: Principles, Performance and Operations, Woodhead Publishing Limited (2009).

章節:

Goodenough, J.B. "Battery Components Active Materials for" in Encyclopedia of Sustainability Science and Technology, (Springer, 2012). (in publication)

K. Zaghib, A. Mauger, Goodenough, J.B., and C.M. Julien, "Design and Properties of LiFePO4", in Nanotechnology for Li-ion Batteries, D. Lockwood, ed. (Springer Verlag, Berlin, 2011) Chapter 8.

Goodenough, J.B., "Materials Design: Fundamental Chemistry and Physics", in Advanced Lithium Batteries, Recent Trends and Perspectives, G. Nazri, A. Manthiram, P. Balaya, A. Yamada, and Y. Yong, eds. (Wiley-VCH, Weinheim, Germany, 2012).

自傳:John B. Goodenough, Witness to Grace (PublishAmerica, 2008)

Goodenough平易近人,在學生眼中他是一個心胸廣闊海納百川的智者94歲的他依然堅持工作和教學,由於二戰時曾作為氣象專家為軍方服務,他對團隊合作大加讚賞,他說「作為一個士兵,我從沒想過憑一己之力贏得戰爭,最重要的是要盡我所能做好本職工作」現在他有一個龐大的研究團隊,孜孜不倦的為新能源的發展努力,他常把自己比作交響樂隊的指揮,他說:「如果我有什麼天賦,那就是創造出能激發別人創造力的環境。」

Goodenough 一生都在不同的專業方向努力,是不折不扣的科學全才。他高中時學習文學,大學專業是數學,戰後主攻物理方向。在後來的材料科學研究中,他又學習化學和工程學知識。「團隊合作並不僅限於人之間,更是科學學科之間,我們需要找到科學、工程、物理和化學之間的聯繫。對於個人來說,學校的全面素質教育,不僅是為了前途更是生活。我們必須分清楚受教育和受訓練的區別。」

Goodenough涉獵廣泛,打算退休之後去研究神學。他相信自然法則,也相信有更強大的力量,曾寫過一篇文章《在神的裁決之下》。他說「當我們需要時,有一雙神奇的手為我們推開一道道門。」

感謝材料人海外專家團隊!

原文地址:材料人專訪John B. Goodenough丨要敢於在交流中坦然暴露出自己的無知

更多材料科技資訊:材料牛 - 服務材料科技創新
推薦閱讀:

動力電池業務再進一步,吉利成洪橋集團第二大股東
線上開講:2017能源應用線上研討論壇
隨筆之八-電網大停電分析
-48%,我的小虧損
隨筆之十一-電能質量問題

TAG:电池 | 新能源 |