斯坦福大學-2017年-秋-最新深度學習基本理論課程分享

文末附課程已經Release出來的視頻課程及PPT獲取地址。

深度學習最近的壯觀成就純粹是經驗性的。不過,知識分子總是試圖從理論上解釋深度學習取得這些重要成就的原因。

在本課程中,我們將回顧Bruna和Mallat,Mhaskar和Poggio,Papyan和Elad,Bolcskei和他的合著者,Baraniuk和他的合著者等人的最近的所做的工作,嘗試建立一套理論框架,以解釋深度學習所取得的這些成績。

首先,我們會講解一些基本的理論知識。然後,我們會邀請一些作者就特定的論文進行講座。本課程每周舉行一次。

課程主頁:stats385.github.io/

課程大綱及閱讀材料列表:

Lecture 1 – Deep Learning Challenge. Is There Theory?

Readings

1. Deep Deep Trouble

2. Why 2016 is The Global Tipping Point...

3. Are AI and ML Killing Analyticals...

4. The Dark Secret at The Heart of AI

5. AI Robots Learning Racism...

6. FaceApp Forced to Pull 『Racist" Filters...

7. Losing a Whole Generation of Young Men to Video Games

Lecture 2 – Overview of Deep Learning From a Practical Point of View

Readings

1. Emergence of simple cell

2. ImageNet Classification with Deep Convolutional Neural Networks (Alexnet)

3. Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)

4. Going Deeper with Convolutions (GoogLeNet)

5. Deep Residual Learning for Image Recognition (ResNet)

6. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

7. Visualizing and Understanding Convolutional Neural Networks

Lecture 3

Readings

1. A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction

2. Energy Propagation in Deep Convolutional Neural Networks

3. Discrete Deep Feature Extraction: A Theory and New Architectures

4. Topology Reduction in Deep Convolutional Feature Extraction Networks

Lecture 4

Readings

1. A Probabilistic Framework for Deep Learning

2. Semi-Supervised Learning with the Deep Rendering Mixture Model

3. A Probabilistic Theory of Deep Learning

Lecture 5

Readings

1. Why and When Can Deep-but Not Shallow-networks Avoid the Curse of Dimensionality: A Review

2. Learning Functions: When is Deep Better Than Shallow

Lecture 6

Readings

1. Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach

2. Convolutional Kernel Networks

3. Kernel Descriptors for Visual Recognition

4. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks

5. Learning with Kernels

6. Kernel Based Methods for Hypothesis Testing

Lecture 7

Readings

1. Geometry of Neural Network Loss Surfaces via Random Matrix Theory

2. Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice

3. Nonlinear random matrix theory for deep learning

Lecture 8

Readings

1. Deep Learning without Poor Local Minima

2. Topology and Geometry of Half-Rectified Network Optimization

3. Convexified Convolutional Neural Networks

4. Implicit Regularization in Matrix Factorization

Lecture 9

Readings

1. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position

2. Perception as an inference problem

3. A Neurobiological Model of Visual Attention and Invariant Pattern Recognition Based on Dynamic Routing of Information

Lecture 10

Readings

1. Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding

2. Convolutional Neural Networks Analyzed via Convolutional Sparse Coding

3. Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning

4. Convolutional Dictionary Learning via Local Processing

課程在線視頻鏈接:

bilibili.com/video/av16

課程ppt下載地址:

鏈接: pan.baidu.com/s/1slyphi

密碼: hrph

往期精彩內容推薦:

深度學習中如何選擇一款合適的GPU卡的一些經驗和建議分享

國立台灣大學-李宏毅-2017年(秋)最新深度學習與機器學習應用及其深入和結構化研究課程分享

模型匯總18 強化學習(Reinforcement Learning)基礎介紹

純乾貨10 強化學習視頻教程分享(從入門到精通)

純乾貨15 48個深度學習相關的平台和開源工具包,一定有很多你不知道的!!!

模型匯總23 - 卷積神經網路中不同類型的卷積方式介紹

斯坦福大學2017年春季_基於卷積神經網路的視覺識別課程視頻教程及ppt分享

ICML17 Seq2Seqtutorial精品資料分享

斯坦福大學2017年-Spring-最新強化學習(Reinforcement Learning)課程分享

麻省理工學院-2017年-深度學習與自動駕駛視頻課程分享

IJCAI-2017年會議論文下載地址分享

<模型匯總-6>堆疊自動編碼器Stacked_AutoEncoder-SAE

<視頻教程-2>生成對抗網路GAN視頻教程part6-完整版


推薦閱讀:

激光雷達原理秒懂
【乾貨】最新有關 DL & ML 的 R 語言書籍
李宏毅機器學習2016 第二十講 結構化線性模型
「轉行人工智慧」是否前景一片光明?

TAG:深度学习DeepLearning | 机器学习 | 神经网络 |