在任意的二維共形場論里,中心荷一定是實數嗎?

在常見的例子里(平直空間的自由玻色、費米子、鬼粒子等)中心荷都是實數,但對於任意情況下中心荷的實性,有沒有一個一般的證明?如果存在反例,是否能給出一個一般的判據?


The answer is: No

(1) In 2D CFT, those unitary diagonal models enforce the reason why their central charges are required to be located in real number line (cinmathbb{R}) . Under such constrain, we have two classes of CFT:

ullet Any value (rational or non-rational) in cgeq1, which is Liouville theory characterized as a model whose spectrum is diagonal and made of a continuum of unitary representations;

ullet Discrete allowed value incleq1, which are known as minimal models characterized as diagonal, rational models.

(2) There are more examples of CFT with complex values of central charge. In fact, the Liouville theory mentioned above can be analytically continued to any complex values of c, however is then no longer unitary:

ullet One is called linear dilaton theory, which has a diagonal continuous spectrum, and is defined for any cinmathbb{C}, being unitary on the line c geq 1;

ullet TheH_3^+-model, a non-rational model with widehat{mathfrak{sl}}(2) symmetry algebra, possesses no unitarity no matter what possible values of central charge reads, which isc=3k/(k+2)inmathbb{C}/{3};

ullet Another model, which also has widehat{mathfrak{sl}}(2), is widetilde{SL}(2,mathbb{R})-WZW model existing for possible level range kinmathbb{C}/{2} with diagonal spectrum.

Reference: https://arxiv.org/abs/1406.4290v3


從Witt algebra引入central charge構成Virasoro algebra的時候並沒有要求central charge是實數,只要求它跟所有的generator對易。但是如果你考慮一個physical 的理論,那麼Virasoro algebra的一個表示,比如left|h
ight
angle 
  和它的descendent states,那麼必須要求norm是實數,那麼leftlangle h|h
ight
angle 是實數,而且leftlangle h|L_{2}L_{-2}|h
ight
angle =4hleftlangle h|h
ight
angle +frac{c}{12}left(2^{2}-1
ight)2leftlangle h|h
ight
angle =left(4h+frac{c}{2}
ight)leftlangle h|h
ight
angle

是實數,所以c必須是實數。


在affine algebra的討論範圍內一定是,也就是說2維情形下一定是。(希望數學系的懂Kac-Moody algebras的朋友指點下)

數學上,證明可以參考kac-moody algebra的loop algebra 的central extension,其中有代數要求c是實數,可參考Kac的《infinite dimensional lie algebra》。時間過去太久了,我自己實在寫不出證明(這裡要考慮dual coxeter number)。看了下我的碩士論文,也只是提到central extension,沒有給出證明。

物理上,central charge來源是operator product expansion導出的virasoro algebra的central extension的係數,這個係數與弦的時空維數是緊密相連的(weyl anomaly),時空是自然數,在這個範圍內,c是自然數。

當然人們還繼續拓展到更有趣的情形,這時候人們考慮的就是如何滿足unitarity的性質,比較典型的例子是ising model。

隨後在研究WZW model時,人們用sugawara construction來構造central charge,這種方法同時推廣到超對稱共形場論中。

其實有個很tricky的方式,c=1是玻色子,c=1/2是費米子,自然界就這兩類粒子。。。自然c就是實數。當然這種情況並非全部理論,c也可以是0到1內任意的實數,例子是minimal model。

寫的比較匆忙,沒有參考一些資料,我再去讀讀書,看是不是這裡面有錯誤或者沒有考慮到的情況。歡迎大家討論。

參考資料可見Paul Ginsparg的Applied Conformal Field Theory及裡面列出的references,那個時代實際上已經把2維CFT玩壞了,除了隨後幾年的Large N=4的情形,但這種情形的central charge依舊是實數,從sugawara construction出發構造的,也就是考慮hat{su(2)}_{k^+}	imeshat{su(2)}_{k^-}的情形。

廣而告之:歡迎關注 Moonshine - 知乎專欄, 不定期更新。


推薦閱讀:

TAG:數學 | 物理學 | 超弦理論 | 量子場論 |