廣告ctr預估有什麼值得推薦的論文?
01-15
UCL的張偉楠在Github上整理過計算廣告領域的一份Paper List,非常有實用價值,強烈推薦關注。
GitHub - wnzhang/rtb-papers: A collection of research and survey papers of real-time bidding (RTB) based display advertising techniques.
其中不僅涵蓋了CTR、CVR預估,還包括RTB競價策略,預算分配與控制,作弊監測,DMP、SSP、DSP系統設計等諸多非常有價值的領域,基本涵蓋了計算廣告的各個環節,不僅可以帶來很多科研上的idea,而且大部分易於工程實現。計算廣告從業者就別自己悶頭造輪子了,直接拿來快速提高廣告效果和系統性能吧!
結合本題,引用一下該List中CTR相關的paper如下:CTR/CVR Estimation
- Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization by Lili Shan, Lei Lin, Chengjie Sun, Xiaolong Wang. Electronic Commerce Research and Applications 2016
- Cost-sensitive Learning for Bidding in Online Advertising Auctions by Flavian Vasile, Damien Lefortier. Workshop on E-Commerce, NIPS 2015.
- A Convolutional Click Prediction Model by Qiang Liu, Feng Yu, Shu Wu, Liang Wang. CIKM 2015
- Factorization Machines with Follow-The-Regularized-Leader for CTR prediction in Display Advertising by Anh-Phuong Ta. BigData 2015.
- Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction by Weinan Zhang, Tianming Du, Jun Wang. ECIR 2016.
- Offline Evaluation of Response Prediction in Online Advertising Auctions by Olivier Chapelle. WWW 2015.
- Predicting Response in Mobile Advertising with Hierarchical Importance-Aware Factorization Machine by Richard J. Oentaryo et al. WSDM 2014.
- Estimating Conversion Rate in Display Advertising from Past Performance Data by Kuang-chih Lee et al. KDD 2012.
- Scalable Hands-Free Transfer Learning for Online Advertising by Brian Dalessandro et al. KDD 2014.
- Evaluating and Optimizing Online Advertising: Forget the click, but there are good proxies by Brian Dalessandro et al. SSRN 2012.
- Modeling Delayed Feedback in Display Advertising by Olivier Chapelle. KDD 2014.
- Ad Click Prediction: a View from the Trenches by H. Brendan McMahan. KDD 2013.
- Practical Lessons from Predicting Clicks on Ads at Facebook by Xinran He et al. ADKDD 2014.
wzhe06/Ad-papers: Papers on Computational Advertising
- Google:Ad Click Prediction:a View from the Trenches. pCTR使用LR, 通過Follow-The-Regularized-Leader (FTRL) Proximal演算法實現在線模型更新, 頻率學派. 寫的很好很細, 也有很多工程細節.
- Bing:Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft』s Bing Search Engine. Online Bayesian Probit Regression, 貝葉斯學派. 涉及到採樣演算法的模型一般訓練起來都比較費勁.
- Facebook:Practical Lessons from Predicting Clicks on Ads at Facebook. DT+LR. 和GBDT非常類似, 不同處在於用LR重新訓練了每棵樹投票的權重. 最近很火的xgboost, 在這一塊也是做了優化,利用二階導數信息得到更快收斂的步長. 樹模型處理不了高維特徵, 但與LR相比在處理連續特徵方面更有優勢.
- Ali:Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising. LR + Conjunction Feature + GroupLasso. Conjunction Feature鮮有耳聞, 要麼效果不好要麼計算量大. GroupLasso是sparse regularization的花活, 沒太大創新.
- 新趨勢是FM, 對於組合特徵有更好的泛化性.
這個就比較多了,隨便列幾個:Ensemble of Collaborative Filtering and Feature Engineered Models for Click Through Rate Prediction,Predicting Clicks:Estimating the Click-Through Rate for New Ads,Practical Lessons from Predicting Clicks on Ads at Facebook,Ad Click Prediction: a View from the Trenches,Click-Through Prediction for Sponsored Search Advertising with Hybrid Models等等,Google搜一下應該就能下了,還有kaggle上面也有相關的競賽及獲獎前幾名的論文
Olivier Chapelle (Principal research scientist in machine learning at Criteo)有一些。 http://olivier.chapelle.cc/pub.html
Chenyan Xiong, Taifeng Wang, Wenkui Ding, Yidong Shen and Tie-Yan Liu. Relational Click Prediction for Sponsored Search. WSDM 2012.
整理了一些計算廣告方面的乾貨,包括paper、dataset、slide、code、video,歡迎一起學習交流!計算廣告乾貨整理 - 雪倫的專欄 - 博客頻道 - CSDN.NET
花名,北冥乘海生,在計算廣告領域有不少的總結,還不錯~top的論文雅虎,谷歌的ctr團隊都貢獻不少
經典的BPR,你值得擁有
推薦閱讀:
※北京大學機器學習有哪些不錯的博士生導師?
※IBM Watson 的獲勝意味著什麼?
※人工智慧機器翻譯的發展經歷了哪幾個重要階段?
※程序員如何利用知乎來找到合適的另一半?