為什麼耳機線總是剛買來不久就壞了一個,而另一個不管用多久死活就是不會壞?


@dongshan 用概率進行分析的思路是對的,但是數學推導欠妥,主要問題在於沒有考慮耳塞本身質量不同的情況,也沒有考慮時間是損壞事x件概率的參數。

事實上耳塞什麼的都是機器,其正常工作的時間服從指數分布,也就是穩定性隨時間降低,你聽得越久,越容易損壞。

假設耳塞的工作時間T服從指數為1的指數分布。即:Tsim mathrm{Exp}(1)

在x時間後,耳塞正常工作的概率為:f(x;1) = e^{-x}  (x>0),損壞的概率為:1-e^{-x}

耳機的兩個耳塞的損壞為相互獨立的事x件,因此他們同時損壞的概率為:

(1-e^{-x})^2=1-2e^{-x}+e^{-2x}

一隻損壞,另一隻沒有損壞的概率為:

e^{-x}(1-e^{-x})=e^{-x}-e^{-2x}

由於上述情況分為A壞B沒壞和B壞A沒壞兩種,所以概率要乘以2,即:

2(e^{-x}-e^{-2x})

假設x的單位為2年,那麼通過計算可以得到如下數據(之前部分數據計算有誤,已更正):

使用一個月後(x=1/24)一隻損壞的概率:2(e^{-1/24}(1-e^{-1/24}))approx 7.83\%

兩隻同時損壞的概率:(1-e^{-1/24})^2approx 0.17\%

兩隻都沒損壞的概率:(e^{-1/24})^2approx 92\%

三項概率加和為1,即100%

同樣的算式可計算出:

使用半年後(x=1/4)一隻損壞的概率:34.45%,兩隻同時損壞的概率:4.89%;

使用一年後(x=1/2)一隻損壞的概率:78.69%,兩隻同時損壞的概率:15.48%;

以上是正確的概率計算方法,以下才是針對於這個問題的分析。

題主認為「剛買來不久就壞了一個,而另一個不管用多久死活就是不會壞」,這裡其實包含了兩個概率。第一個是耳塞很快就壞掉的概率很大,第二個是另一個耳塞可以用很久都不壞的概率很大。造成這種現象的原因主要是由於耳塞的質量不穩定,因此並不能用上面的概率計算來簡單分析。

由於耳機的出廠質量不一,就會影響其正常工作時間的分布函數的參數,也就是lambda 。指數分布的完整形式:f(x;lambda )=lambda e^{-lambda x},而lambda 本身可以認為是服從正態分布的。這樣就形成了一個二維分布函數:

即:lambda sim N(mu, sigma^2)Tsim mathrm{Exp}(lambda)

P(lambda =y)=frac{1}{sigma sqrt{2pi}}e^{-frac{(y-mu)^2 }{2sigma ^2}}

P(T=x)=lambda e^{-lambda x}

g(y)=P(lambda =y),則有:P(lambda=y,T=x)=g(y) e^{-g(y)x}

等我有空用Matlab畫一個三維分布函數圖再來看看吧。

如果正態分布的sigma 值過大,也就意味著質量差別很大,在這種情況下,一直很快壞掉而另一隻用很久也沒壞的概率是相當大的。當然,越高端的耳機越不容易出現題主這種情況。

以上如有謬誤,敬請指正。


瀉藥。

假設一副耳機的兩個耳塞壞不壞是相互獨立的,而且其中的每一個在你一定使用期內壞掉的概率皆為a,由於耳機壞的概率比較小,所以a是一個很小的數值,我這裡假設你買的是一付經過咱們學校小賣部大媽認證過的高保真派克耳機,也就是說,這副耳機每個塞子的a=0.1

另外,我們有這副耳機每個塞子經久耐艹不損壞的概率,這個概率我們記為b,如果你覺得你還對得起你高中體育老師的話,你應該能得到:

a+b=1, b=0.9

其中a+b=1是什麼意思呢?

就是對於一個耳塞來說,它不是好的,就是壞的,所以這個概率和為1。

對於兩個這樣的耳塞,我們有:

(a+b)^2=a^2+2ab+b^2=1

這個2ab是多少呢?

2*0.1*0.9=0.18

這個2ab是什麼意思呢?

一個塞子是好的,一個是壞的。

倆塞都壞的概率a^2

0.1*0.1=0.01

所以說只壞一個塞的概率是倆塞都壞掉的幾率的18倍

18倍是個什麼概念?

「如果你兩個月到小賣部大媽買一次耳機的話,差不多能在高中三年內遇到一次倆個塞子一起壞其他任何時候只會壞一個塞子。」

實際上,由於一個著名的哲人(不好意思我實在想不起這位哲人叫什麼名字了)曾經說過:「世界上沒有完全相同的倆耳塞」,因此,每一副耳機的倆塞損壞概率都是不一樣的,這個不一樣,將會使結果中的 只壞一個塞子的概率/倆塞子都壞 的比值變得更大。

如果你覺得你依然有勇氣有資格有顏面去見那個據稱是這個島上最帥的男人的話,你可以嘗試一下自己推導上面這個結論。

提示:

思路很直

至於你關於「為什麼買回來不久就壞了一個,另外一個死活壞不了」的疑問,

曾氏曾經曰過:

美好的時光總是過得特別快,而我卻熬不過今晚。

※※※※※※※※※※※※※※※※※請勿在密封線內作答※※※※※※※※※※※※※※※※※

更新:

有同學提到答案里的概率a是怎麼來的,如果沒記錯的話,這確實是超出了高考數學的範疇,不過要理解這個過程也只需一點簡單的微積分知識,在這裡我簡單說一下:

對於耳機這類連續使用(顯然,時間是連續的)的產品,我們使用概率密度函數來描述其在某個時間區間上的損壞分布,我們記這個描述損壞分布的函數f(x),相應地,耳機在時間段[0,t]內損壞的概率af(x)在[0,t]上的定積分

a=int_{0}^{t}f(x)dx

我們有:

1、a隨著使用時間的增大而增大,當t趨於無窮時,a=1。

2、對於剛買來不久(t很小)的耳機,a是一個較小的值(如0.1),我們能得出和之前論述的18倍結果相似的情況。

思考題:

假設題主是這麼一個男人:無論這副耳機的狀態是兩個塞子響,一個塞子響,還是在唱完一曲哀轉久絕的愛情買賣後倆耳塞崑山玉碎,雙雙殉情而去,我們不拋棄、不放棄的題主一定會把這副耳機用到指定的時間t到了為止。如果在這裡,我們給這個t加一個期限:

1. 365天

2. 一萬年

如果時間可以如果的話,聰明的你,請告訴我,這個故事的結局,又應該如何下筆呢?

※※※※※※※※※※※※※※※※※請勿在密封線內作答※※※※※※※※※※※※※※※※※

只能幫你到這裡了。

以上。


不是單元壞了。而是耳機插頭處斷線了。去能修耳機的地方換個插頭就可以。大概10塊錢左右。


因為當你發現壞了一個時,這耳機就不怎麼用了

撐死偶爾聽聽吧


會不會是耳機廠的陰謀


我不知道為什麼,但是遇到這種情況,我們屌絲都是這樣做的:

寢室妹子兩個耳機A和B各有一個聽筒壞了,她就把A耳機好的那個耳塞里的小喇叭取出來用電烙鐵焊到了B壞掉的那個聽筒上面,至今效果杠杠滴啊啊啊!

願對你有啟發?


同年同月同日生的人,同年同月同日死的概率有多大?


目測你買的地攤耳機?買個潛水專家79也就79包郵(質量很好,我用來做跑步塞都沒壞,壞了的話潛總好像給換?)淘寶就有,推薦西安的那個店,我就在哪裡買的(同城快遞肯定快嘛對吧)


都是這種問題,兩個耳塞總是有一個會壞掉~~~~~


應該是要換插頭了吧?

個人感覺westone的插頭設計最合理。


如果不追求效果,你又是我這種電子產品殺手,建議買六塊錢的耳機和八塊錢的滑鼠。


請買個100左右有保修的


通常是壞掉了一個以後,你不會把它當助聽器來用,我是說只聽那個好的,或者你只在它壞掉一邊以後相當短的時間內忍受單聲道的效果,然後它就被棄置一旁了,而一個不用的東西,在你的感覺里自然永遠不會壞。


這個我可以回答一下,因為我手機就是這樣的,其實是你手機壞了,所以耳機插進去才是一邊好的一邊壞的


推薦閱讀:

有哪些空手套萌貓的好辦法?
有什麼關於澳門的冷知識?
如果讓一個出生不久的小孩戴上VR(虛擬現實)設備,他之後還能分辨出哪邊是真實世界么?
用手機攝像頭檢驗檯燈是否護眼的方法靠譜么?
如果是相對運動,那可不可以理解地心說是正確的?

TAG:數學 | 耳機 | 冷知識 | 概率 | 科學 |