一個線性代數問題求解?

P_{i} (i = 1, 2) are idempotent symmetric projection matrices onto some vector spaces V_{i} respectively, i.e. forall x_{i} in V_{i} , P_{i}x_{i}=x_{i} and forall y_{i} in V_{i}^{ot }, P_{i}y_{i}=0.

Show: P=P_{1} +P_{2} is a projection matrix onto some vector space Leftrightarrow P_{1}P_{2}=P_{2}P_{1}=0


其實是要證明V_1V_2正交,思路是如果不正交,對某個向量反覆投影的結果會變化

任取x in V_1,則Px = P_1x + P_2x = x + P_2x

P(Px) = x + P_2x + P_2x = x + 2P_2x

因此P_2x = 0

因此對於任意向量v,有P_2(P_1v) = 0,因此P_2P_1 = 0

同理P_1P_2 = 0

反過來證明也是充分條件,

P^2 = (P_1 + P_2)(P_1 + P_2) = P_1^2 + P_2^2 + P_1P_2 + P_2P_1 = P_1 + P_2 = P

因此P是投影矩陣。它的像空間是投影到的空間而核空間是像空間的正交補。從P_1, P_2的關係來說,它的像空間是V_1, V_2的直和,核空間是兩個空間正交補的交。


假設P_{1} ,P_{2} 是冪等的,不用正交

如果P=left( P_{1}  +P_{2} 
ight) 是冪等的,

  1. 可以得出P_{1} P_{2} +P_{2} P_{1} =0

  2. P_{1} left( P_{1} P_{2} +P_{2} P_{1}  
ight) =0left( P_{1} P_{2} +P_{2} P_{1}  
ight) P_{1} =0

  3. 乘進去用冪等化簡一下,然後兩個式子相減就得到P_{1} P_{2} -P_{2} P_{1} =0

再結合1裡面的式子就得出了P_{1} P_{2} =P_{2} P_{1} =0

反過來推簡單~~


推薦閱讀:

坐標係為什麼是正交的?

TAG:數學 | 統計學 | 線性代數 | 高等數學 | 線性回歸 |