ICML2017 優化領域有什麼值得關注的論文?

接受的論文名單已經出來了,先佔個樓,請各位大牛不吝賜教。

對於優化的熱點問題或者今後發展方向大家有什麼想法。


非常推薦nonconvex的新分析:[1703.00887] How to Escape Saddle Points Efficiently

然後厚顏無恥的提一下自己的灌水文:[1702.07944] Stochastic Variance Reduction Methods for Policy Evaluation


推薦一下

Li Q, Tai C, Weinan E ,. Dynamics of Stochastic Gradient Algorithms[J]. Computer Science, 2015.

用SDE建模SGD這方面工作有很多

2017COLT

Best Paper. Yuchen Zhang, Percy Liang and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics

Maxim Raginsky, Alexander Rakhlin and Matus Telgarsky. Non-Convex Learning via Stochastic Gradient Langevin Dynamics: A Nonasymptotic Analysis

然後最推薦這篇

Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillame Carlier, Deep Relaxation: Partial Differential Equations for Optimizing Deep Neural Networks, April 2017 (revised (June 2017)

用hamilton jacobi來建模


我做一個粗粗整理類的事情吧(沒有細看,先粗粗的分類一下好了),

我瞄了瞄我個人關注的領域,Non-Convex, Convex, Stochastic Non-Convex, Stochastic Convex, Frank Wolfe 衍生演算法 。所以Online ,Distributed, Coordinate Descent ,以及Application 之類的我就沒有加入進來。 另外還有許多別的很好的optimization演算法,但因為我之前沒有接觸過我也沒有放進來,如果還遺漏了別的paper也請見諒。

Non-Convex:

1&> [1703.00887] How to Escape Saddle Points Efficiently

2&> [1703.02628] Global optimization of Lipschitz functions

3&> [1705.04925] Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization

Non-Convex + Stochastic:

1&> [1705.05933] Sub-sampled Cubic Regularization for Non-convex Optimization

2&> Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter

Convex:

1&> [1611.04982] Oracle Complexity of Second-Order Methods for Finite-Sum Problems

2&> [1705.00772] A Semismooth Newton Method for Fast, Generic Convex Programming

3&> [1702.08124] A Unifying Framework for Convergence Analysis of Approximate Newton Methods

Convex + Stochastic:

1&> [1607.01027] Accelerated Stochastic Subgradient Methods under Local Error Bound Condition

2&> A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient

Frank Wolfe 衍生演算法:

1&> [1610.05120] Lazifying Conditional Gradient Algorithms

2&> [1703.05840] Conditional Accelerated Lazy Stochastic Gradient Descent


也許這篇文章可以幫到你:

ICML 2017論文精選#1 用影響函數(Influence Functions)理解機器學習中的黑盒預測(Best paper award 最佳論文獎@斯坦福)


推薦閱讀:

Siri 的回答是由蘋果公司的工作人員手動輸入進去的嗎?如果是,工作量是不是很大?
為什麼 Siri 的中文化這麼差?
語音喚醒技術的原理是什麼?
聲音識別的 ImageNet 誕生了,大家想用它做什麼呢?

TAG:人工智慧 | 機器學習 | 凸優化 | 人工智慧演算法 |