ICML2017 優化領域有什麼值得關注的論文?
接受的論文名單已經出來了,先佔個樓,請各位大牛不吝賜教。
對於優化的熱點問題或者今後發展方向大家有什麼想法。
非常推薦nonconvex的新分析:[1703.00887] How to Escape Saddle Points Efficiently
然後厚顏無恥的提一下自己的灌水文:[1702.07944] Stochastic Variance Reduction Methods for Policy Evaluation
推薦一下
Li Q, Tai C, Weinan E ,. Dynamics of Stochastic Gradient Algorithms[J]. Computer Science, 2015.
用SDE建模SGD這方面工作有很多
2017COLT
Best Paper. Yuchen Zhang, Percy Liang and Moses Charikar. A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Maxim Raginsky, Alexander Rakhlin and Matus Telgarsky. Non-Convex Learning via Stochastic Gradient Langevin Dynamics: A Nonasymptotic Analysis
然後最推薦這篇
Pratik Chaudhari, Adam Oberman, Stanley Osher, Stefano Soatto, and Guillame Carlier, Deep Relaxation: Partial Differential Equations for Optimizing Deep Neural Networks, April 2017 (revised (June 2017)
用hamilton jacobi來建模
我做一個粗粗整理類的事情吧(沒有細看,先粗粗的分類一下好了),
我瞄了瞄我個人關注的領域,Non-Convex, Convex, Stochastic Non-Convex, Stochastic Convex, Frank Wolfe 衍生演算法 。所以Online ,Distributed, Coordinate Descent ,以及Application 之類的我就沒有加入進來。 另外還有許多別的很好的optimization演算法,但因為我之前沒有接觸過我也沒有放進來,如果還遺漏了別的paper也請見諒。
Non-Convex:
1&> [1703.00887] How to Escape Saddle Points Efficiently
2&> [1703.02628] Global optimization of Lipschitz functions
3&> [1705.04925] Convergence Analysis of Proximal Gradient with Momentum for Nonconvex Optimization
Non-Convex + Stochastic:
1&> [1705.05933] Sub-sampled Cubic Regularization for Non-convex Optimization
2&> Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Convex:
1&> [1611.04982] Oracle Complexity of Second-Order Methods for Finite-Sum Problems
2&> [1705.00772] A Semismooth Newton Method for Fast, Generic Convex Programming
3&> [1702.08124] A Unifying Framework for Convergence Analysis of Approximate Newton Methods
Convex + Stochastic:
1&> [1607.01027] Accelerated Stochastic Subgradient Methods under Local Error Bound Condition
2&> A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
Frank Wolfe 衍生演算法:
1&> [1610.05120] Lazifying Conditional Gradient Algorithms
2&> [1703.05840] Conditional Accelerated Lazy Stochastic Gradient Descent
也許這篇文章可以幫到你:
ICML 2017論文精選#1 用影響函數(Influence Functions)理解機器學習中的黑盒預測(Best paper award 最佳論文獎@斯坦福)
推薦閱讀:
※Siri 的回答是由蘋果公司的工作人員手動輸入進去的嗎?如果是,工作量是不是很大?
※為什麼 Siri 的中文化這麼差?
※語音喚醒技術的原理是什麼?
※聲音識別的 ImageNet 誕生了,大家想用它做什麼呢?