求適合入門的數學分析書?
泛函分析
泛函分析是研究拓撲線性空間到拓撲線性空間之間滿足各種拓撲和代數條件的映射的分支學科。它是20世紀30年代形成的。從變分法、微分方程、積分方程、函數論以及量子物理等的研究中發展起來的,它運用幾何學、代數學的觀點和方法研究分析學的課題,可看作無限維的分析學。
泛函分析的產生
十九世紀以來,數學的發展進入了一個新的階段。這就是,由於對歐幾里得第五公設的研究,引出了非歐幾何這門新的學科;對於代數方程求解的一般思考,最後建立並發展了群論;對數學分析的研究又建立了集合論。這些新的理論都為用統一的觀點把古典分析的基本概念和方法一般化準備了條件。
本世紀初,瑞典數學家弗列特荷姆和法國數學家阿達瑪發表的著作中,出現了把分析學一般化的萌芽。隨後,希爾伯特和海令哲來創了「希爾伯特空間」的研究。到了二十年代,在數學界已經逐漸形成了一般分析學,也就是泛函分析的基本概念。
由於分析學中許多新部門的形成,揭示出分析、代數、集合的許多概念和方法常常存在相似的地方。比如,代數方程求根和微分方程求解都可以應用逐次逼近法,並且解的存在和唯一性條件也極其相似。這種相似在積分方程論中表現得就更為突出了。泛函分析的產生正是和這種情況有關,有些乍看起來很不相干的東西,都存在著類似的地方。因此它啟發人們從這些類似的東西中探尋一般的真正屬於本質的東西。
非歐幾何的確立拓廣了人們對空間的認知,n維空間幾何的產生允許我們把多變函數用幾何學的語言解釋成多維空間的影響。這樣,就顯示出了分析和幾何之間的相似的地方,同時存在著把分析幾何化的一種可能性。這種可能性要求把幾何概念進一步推廣,以至最後把歐氏空間擴充成無窮維數的空間。
這時候,函數概念被賦予了更為一般的意義,古典分析中的函數概念是指兩個數集之間所建立的一種對應關係。現代數學的發展卻是要求建立兩個任意集合之間的某種對應關係。
這裡我們先介紹一下運算元的概念。運算元也叫算符,在數學上,把無限維空間到無限維空間的變換叫做運算元。
研究無限維線性空間上的泛函數和運算元理論,就產生了一門新的分析數學,叫做泛函分析。在二十世紀三十年代,泛函分析就已經成為數學中一門獨立的學科了。
泛函分析的特點和內容
泛函分析的特點是它不但把古典分析的基本概念和方法一般化了,而且還把這些概念和方法幾何化了。比如,不同類型的函數可以看作是「函數空間」的點或矢量,這樣最後得到了「抽象空間」這個一般的概念。它既包含了以前討論過的幾何對象,也包括了不同的函數空間。
泛函分析對於研究現代物理學是一個有力的工具。n維空間可以用來描述具有n個自由度的力學系統的運動,實際上需要有新的數學工具來描述具有無窮多自由度的力學系統。比如梁的震動問題就是無窮多自由度力學系統的例子。一般來說,從質點力學過渡到連續介質力學,就要由有窮自由度系統過渡到無窮自由度系統。現代物理學中的量子場理論就屬於無窮自由度系統。
正如研究有窮自由度系統要求 n維空間的幾何學和微積分學作為工具一樣,研究無窮自由度的系統需要無窮維空間的幾何學和分析學,這正是泛函分析的基本內容。因襲,泛函分析也可以通俗的叫做無窮維空間的幾何學和微積分學。古典分析中的基本方法,也就是用線性的對象去逼近非線性的對象,完全可以運用到泛函分析這門學科中。
泛函分析是分析數學中最「年輕」的分支,它是古典分析觀點的推廣,它綜合函數論、幾何和代數的觀點研究無窮維向量空間上的函數、運算元、和極限理論。他在二十世紀四十到五十年代就已經成為一門理論完備、內容豐富的數學學科了。
半個多世紀來,泛函分析一方面以其他眾多學科所提供的素材來提取自己研究的對象,和某些研究手段,並形成了自己的許多重要分支,例如運算元譜理論、巴拿赫代數、拓撲線性空間理論、廣義函數論等等;另一方面,它也強有力地推動著其他不少分析學科的發展。它在微分方程、概率論、函數論、連續介質力學、量子物理、計算數學、控制論、最優化理論等學科中都有重要的應用,還是建立群上調和分析理論的基本工具,也是研究無限個自由度物理系統的重要而自然的工具之一。今天,它的觀點和方法已經滲入到不少工程技術性的學科之中,已成為近代分析的基礎之一。
泛函分析在數學物理方程、概率論、計算數學、連續介質力學、量子物理學等學科有著廣泛的應用。近十幾年來,泛函分析在工程技術方面有獲得更為有效的應用。它還滲透到數學內部的各個分支中去,起著重要的作用。
我要不還是不說卓里奇這種禍害人間的書了吧
習慣中學思維請找劉玉璉想體會物理思維請找龔昇
想有所提高可以看張築生
想再深入地學習看胡適耕、Apostol想學習周全可以看Amann、陳天權、Dieudonne、Zorich打算找虐看Rudin我就說我自己伐。。。我分析上來讀的是陶哲軒的實分析(其實算不上實分析,只是分析。。),然後直奔卓里奇,中間用吉米多維奇的習題練手(恩,沒做多少,我很懶。。)。。。好處是對那種布爾巴基風味和比較抽象的內容很適應(陶哲軒的書從自然數一路架構到實數理論啊,剛入大學的時候覺得帥爆了),後面學習實分析和泛函分析應該會輕鬆一些。。鑒於這是條彎路。。。雖然很刺激,但是。。。。一度計算能力弱的要死。。。。所以,入門還是菲赫金哥爾茨的微積分學教程+哈代的純數學教程可能會好一些。。。
先看微積分和數學分析引論(第一卷) (豆瓣),然後看實數學分析(影印版) (豆瓣)。
你可以先看看《微積分的歷程》,了解下歷史上的人為什麼要做分析。然後看看上課教材,或者配合《重溫微積分》裡面給你深刻了一些東西,系統的直接上經典卓里奇。
數分原理(逃
普林斯頓微積分讀本
復旦版的,絕對簡單
《微積分學教程》
雖然厚了些,但是講得詳細,適合自學和初學者。雖然沒有課後習題,但書中充滿經典例題,也就是說相對於沒有厚度但也沒有詳解的教材書來說,他是一本自帶高質量詳解的教材書,並且沒有套路題。如果不是自學,且感覺教學進度不是特別寬鬆,不要使用這本書。因為可能跟不上教學進度。《數學分析原理》
推薦閱讀:
※只用位運算實現比較兩整數大小,有沒有簡短優雅的O(1)的解法?
※什麼是deformation quantization?
※請問σ-代數(sigma-algebra)的含義是什麼,能否舉例說明?
※在以前沒有計算器的年代,開根號是怎麼做到的?
※如何用向量(a,b,c)和(x,y,z)表示向量(ax,by,cz)?