為什麼公路自行車的車輪很窄?

輪胎窄可以有效減小阻力,請問具體的原理是什麼呢?
滑動摩擦力與壓力、摩擦係數有關,與面積無關。。。但我知道這裡肯定不能這麼解釋,-_-|||

---------------------------------------------------------------------------------------------------------------------------------
感謝下面所有人的回答,了解到其屬於滾動阻力,剛剛去查了一下輪胎的滾動阻力,智商欠費,只理解了一部分,希望大牛解釋一下為什麼輪胎越窄,滾動阻力會越小?
汽車運用工程——滾動阻力


簡單粗暴的事實:

輪子細利於減重,利於減小風阻,這兩項在公路車上面有著壓倒性的重要性。其他條件如重量、胎壓等完全相同,而僅有輪胎粗細不同時,滾阻區別不大。本文中滾阻均不包括風阻。

我先說幾個簡單的事實,回頭填坑,這個問題很有意思:

1.根據schwalbe公司的說法,超過20km/h時風阻就超過滾阻成為了主要因素,因為風阻和速度的平方成正比。
2.重量,尤其是輪圈上的重量,對性能影響很大,因為轉動慣量和半徑的平方成正比。細輪胎容易做的很輕。

總而言之:平方牛逼,滾阻什麼的靠邊站

------------------------------------------說一下滾阻--------------------------------------------------------------------------------
滾動阻力是一個大話題。
首先丟給你一個wiki的連接,先看看
Rolling resistance

以下引自wikipedia


註明:很多對滾阻的定義不一,比如有時候輪子與地面相對微小滑動時的阻力,火車在鐵軌上左右晃蕩的摩擦力,這裡暫時不考慮這些奇葩的東西(其實是我不會哈哈哈),也不考慮空氣阻力。


主要分成三種:

1.剛性輪,在柔性路面的表現(剛柔性是相對,不是絕對,意味著不考慮輪的形變);
2.柔性輪,通常情況是充氣輪胎,在剛性路面上(意味著不考慮路面形變)的表現
3.一塊是路面和輪子剛性相似,考慮輪子和路面形變的表現(比如火車在鐵軌上)。

1.剛性輪胎,柔性路面

比如在沙灘上騎自行車。

可以看到,影響較大的是輪子陷得有多深,別的相對可以忽略不計。因此適用於泥地、雪地里的自行車fatbike是這樣的:

一切為了降低陷在地里的深度來減小阻力。

2.剛性路面,柔性輪胎。

這是研究的最多的情況,因為絕大多數輪子都是採用的充氣橡膠輪胎。也是理論普及比較廣的一種情況。

這種情況下,和滾動阻力關係最密切的是一個叫做Elastic hysteresis,彈性遲滯的現象。
Hysteresis


聲明:不是材料或者力學專業,求專業人士斧正,看管請批判性思考

首先明確彈性和粘性:

理想彈性:應力與形變成正比,即虎克定律,例如:拉伸一個彈簧,拉伸越長越費力;
理想粘性:應力與形變速率成正比,例如:攪動一杯粘糖漿,攪的越快越費力。

如果是理想彈性材料,那麼外力所做的功全部以彈性勢能的形式儲存在彈性體內,可以將等量能量以機械能完全釋放。
如果是理想粘性材料,那麼外力所做的功一部分轉化為內能被粘性體耗散,一部分轉化為粘性體的機械能,不會有勢能儲存和釋放。

高分子材料(例如橡膠)的力學行為在通常情況下總是或多或少表現為彈性與粘性相結合的特性,這種特性稱之為粘彈性或者粘彈塑性。這種結合因材料不同而會表現出不同的彈性或粘性程度。

總而言之:橡膠變形恢復過程中,一部分機械能轉化為內能。

其次明確彈性遲滯Elastic hysteresis


(引自百度百科,橡膠就屬於聚合物)
聚合物的加工過程是外力和溫度的共同作用下,大分子形變和進行重排的結果。由於聚合物大分子的長鏈結構和大分子運動的逐步性質,聚合物分子在外力作用時與應力相適應的任何形變都不可能在瞬間完成,大分子從原狀態在外力作用下經過形變、重排,直到與外力相平衡,這個過程可以看做一個鬆弛過程,它所需的時間稱為鬆弛時間。由於鬆弛過程的存在,材料的形變必然落後於應力的變化,聚合物對於外力相應的這種滯後現象稱為」滯後效應「或」彈性滯後「,導致載入-應變和卸載-應變曲線不重合的現象,如下圖所示。

形象描述一下:

你用力快速猛拉一個原長10cm的橡膠條,一半全力時變成15cm,全力時最終達到30cm;
然後開始逐漸放鬆拉力等待它恢復原長,一半全力時變成25cm,放鬆時最終恢復10cm。
再與一個某個也是10cmd 理想彈簧比較,一半全力時變成20cm,全力時最終達到30cm。
再逐漸放鬆拉力等彈簧恢復原長 , 一半全力時變成20cm,放鬆時最終恢復10cm。
總而言之:對於某橡膠,猛一拉它變長很慢,猛一松它縮短也很慢。


顯然,理想彈性體的載入卸載曲線與速率無關,總是一條直線。
而粘彈性體會有兩條曲線不重合,這兩條曲線中間包圍的部分就是耗散的內能。這條曲線的形狀隨著材料不同而不同,有時候也會無法回到原長,比如橡皮泥,比如麵糰餃子皮。

再結合之前的粘彈塑性(與應變速率相關):你拉/壓地越猛越快、放鬆地越猛越快,這種現象就越明顯,即就有越多地能量以內能耗散。

從上圖中可以看出,每條曲線下方的的部分就是所對應的能量,因此可以得出結論:

橡膠初始變形所需的能量,總是大於恢復原形時釋放的能量,能量差以內能耗散。
好了,現在我們解決了為什麼籃球越彈越低的問題,哪怕再真空中沒有空氣阻力。

然後回到車胎。

下圖是自行車前輪(非驅動輪)與地面接觸示意圖,虛線為車輪的軸心,車子正在向右走。

根據剛才的理論,受力圖如圖所示,仔細想想應該想得通。
車胎前面(圖上右邊)猛地被擠壓,產生了較大的力。
車胎後面(圖上左邊)雖然正在離開與地面的接觸,但是輪胎慢吞吞的回彈,輪胎和地面之間的彈力沒有那麼大。

車子的重力沿著軸線向下,對軸線上任意一點取彎矩,重力產生彎矩為零,而圖中紅色力的合力會產生讓車輪逆向旋轉的扭矩。

這就是滾動阻力。

好了,現在為了減小滾動阻力,看看有什麼辦法。

1.選擇合適的橡膠品種,讓這個遲滯效應盡量減小。你要是只騎著一個輪圈不裝輪胎,那想必滾阻是極好的(但是你沒法拐彎了LOL),理想彈性大法好!
2.氣壓打足,輪胎硬邦邦,這樣上圖中平坦的部分就會變短,紅色合力的力臂也會變短,導致它產生的逆向扭矩變小。嘭!
3.車子盡量輕,人也滾去減肥,這樣總重減小,紅色部分的合力大小減小,導致它產生的逆向扭矩變小。
4.其實吧,,你也可以騎得慢一點,這樣變化速率減小了,遲滯效應就不明顯了,能量損耗就減小了。「哥們,騎慢點滾阻小,省勁兒!終點見!」
5.以上條件完全相同時,輪胎寬窄對於滾阻似乎沒有影響。然而,細輪胎胎壓可以打的非常高,是山地車寬輪胎的好多倍(這個應該好理解,輪胎最大氣壓和輪胎粗細,以及輪圈可以承受的總壓力),相對的形變比山地車少,因此能量損耗也低。例如,山地車胎一般胎壓最高為65psi, 而公路管胎可以高達200+psi。同時還要注意,當車胎寬度達到一定程度後,模型就變成了一個曲面中心受壓,而不能簡化為上圖的一個曲線中點受壓,分析起來會有一定區別。總而言之:其他條件完全相同時,輪胎粗細對滾阻影響不大,遠低於車重變化和空氣阻力變化的影響。

---------------------------------------------------我們回到車輪:---------------------------------------------------
根據題主你的問題,看來是想問滾動阻力和接觸面積的關係。如果僅僅考慮這兩個因素,我還沒有找到很權威的結論。然而,問題是基於現實的,要將不同寬度的輪胎控制到形變難易程度、胎壓都一致的情況是有難度的,現實中也沒有變數控制的這麼好的實例。而脫開滾阻大小,公路車還要考慮空氣動力學、重量和轉彎時候的抓地力,因此並不是越細越好(如同樓下 @Andy Ye 所提到)。
稍寬的輪子和輪胎可能有更好的空氣動力學表現。盜個圖,來源:微博

最終公路車輪胎的寬窄是以上各個因素相互權衡考慮之後達到的一個相對最優化的結果,其中著重考慮的是空氣阻力和重量,而不是滾動摩擦力,這是「為什麼公路車輪胎這麼窄」的回答。

。。。。。。其實還沒完,

3.輪子與路面剛性相似

火車在鐵軌上需要考慮輪子和鐵軌的形變。不知道你們怎麼樣,我有點兒累覺不愛了。就醬吧。。


也不一定是越窄越好,現在的趨勢是25C的輪胎,因為在使用胖圈碳纖維輪組的時候風阻比別的尺寸的更低,在高胎壓下的滾動阻力反而小,而且過彎有更好的抓地力。

具體數據請看下文:

Notice anything fat in photo above? It』s can』t be the riders … nor the spectators. Instead look at the front wheel where Matthew Goss is running a 25mm wide tyre.

One trend in bike technology for 2013 is the advent of wider rims and tyres and, accompanying this, the progress of clincher tyres. It』s common to see 25mm width tyres on team bikes today, something that was unthinkable a few years ago.

As background it was long thought that the narrower the tyre, the faster it was. Especially when riders faced a time trial wheels could appear with 18mm tyres. These had the advantage of being narrow and so more aerodynamic and because there was less material, lighter too. It wasn』t just for the special stages, much of the bunch would ride on 21mm tyres for the whole year.

Once or twice a year things got wider when it came to the Tour of Flanders and Paris-Roubaix. But go back to 2006 and the reliable build-up of George Hincapie』s chances. In a piece looking at his bike there』s talk of 23mm and 26mm for the day.

These days Argos-Shimano, Blanco, BMC Racing, FDJ, Omega Pharma-QuickStep, Orica-Greenedge, Radioshack-Leopard and Sky are running 25mm. Why? Well increased grip is one explanation. But there』s more to it. Here』s one reason:

We went from 21mm and 23mm to 25mm tyres in the last few seasons; new research shows that 25mm have less rolling resistance and I have the feeling they give more comfort and traction so it』s a win-win situation
– Koen de Kort, Argos Shimano speaking to RIDE Cycling Review, Issue 59, p95.

Rolling resistance is the resistance encountered for a wheel to roll over obstacles in its way. The smoother the road, the lower the resistance. Unlike aerodynamics this is a linear force that increases in line with speed. Do wider tyres have lower rolling resistance? Probably as they are able to deflect more on the road but it depends on the pressure of inflation. As the wheel rolls over the imperfect tarmac the tyre constantly deflects as it crosses the surface.

The narrower the tyre, the longer the measurement for S

The diagram comes from Schwalbe and they explain that at the same tyre pressure, a wide and a narrow tyre have the same contact area. A wide tyre is flattened over its width whereas a narrow tyre has a slimmer but longer contact area. The long flatter area is less round so it doesn』t roll so well. In other words the shorter the S-measurment, the rounder the wheel. Bikeradar has more on this.


The evolution of the revolution


But there』s a new factor as well to explain the adoption of 25mm tyres in the peloton and it』s come through rim design. I think it began with Zipp』s Firecrest models (edit: I was wrong, it was HED, see comments below) which use a wider rim that』s bulbous in profile as the cross-sections above show. The wide profile is supposed to offer improved aerodynamics but what』s certain is the width, the rim is so wide it cannot be swapped easily with a standard rim because the brakes need adjusting. This was evident with BMC Racing earlier this year when they were marking bikes with tape according to what rims they』d got. BMC use Shimano wheels, the Japanese manufacturer is also offering wide rims. The same for Bontrager and we saw Fabian Cancellara in the Tour of Flanders using broad rims from Bontrager.

Wide = Strong
I have another theory about wide rims. They may offer increased aerodynamics but they are stronger too. Being wider means a larger arch which helps brace the rim against impacts, infact the sidewalls can offer some slight flex outwards. Here the rim can, in a tiny way, act like a tyre to dampen impacts. This is good for pros pounding the cobbles… but even better for manufacturers who get fewer breakages and returns after selling wheels to weighty weekend warriors. Put another way rims might be more sold as more aero but they』re certainly stronger too.

Clinchers, a stage to tubeless?
Finally a note on the topic. For years clinchers were an inferior product and required a heavier rim because of the sidewalls with hooks. The rim weight remains but because the mass market is dominated by clinchers a lot of RD has gone into improving them. To the point where they offer lower rolling resistance. We』re now seeing riders using clinchers in time trials because they don』t mind about the wheel weight when they』ve already got a heavy disc on the back wheel.

Looking ahead one day perhaps all riders will use tubeless tyres. These have the body of a clincher but there』s no inner tube since the bead forms an airtight seal with the rim. It』s used on some mountain bikes and of course cars but the market is limited for now with road bikes. But if the market can adopt 25mm tyres when once upon a time it would have been unthinkable, who knows?

Summary
Once reserved for training, touring or Paris-Roubaix, now 25mm tyres are being used by nearly half the World Tour peloton. Increased grip and better rolling resistance come with width. But comparisons with the past aren』t fair because modern casings are much more supple yet lighter, you can have a 25mm model today that would have felt like a tractor tyre a decade ago.

Is there a big difference? Probably not but everyone is hunting for marginal gains. The revolution is in the spin of the wheel rather than design, the difference of two millimetres is evolution. Tyre width also also a function of the rim choice, it』s not just a question of glueing on wider tyres. Teams running 25mm are often those with wheel sponsors supplying wide rims. Squads on narrower rims, for example using the Campagnolo Bora, are using 23mm. Tyre pressure, the rubber compound used, the condition of the roads, the tube used inside and more all have their say. But fat tyres are here to stay.

Reinventing the Wheel: The 25mm Revolution


最新趨勢是,25、27甚至更寬的超胖圈開始流行。隨著UCI的解禁,碟剎在公路賽場全面開放。沒有了公路夾器的限制,輪圈可以做到更寬。

寬胎的好處在於:

  1. 氣動性能更好。
  2. 側向抓地力更強,過彎更穩。
  3. 較寬的輪胎可以減少變形量,從而降低滾動阻力。此前芬蘭專業測試機構Wheel Energy Oy對數十款輪胎進行測試,最終SPECIALIZED 26mm寬胎的滾阻最低。
  4. 寬胎能適應更複雜的路況。

因為輪胎與地面的摩擦不是滑動摩擦啊……
你把前後閘都鎖死,然後推著自行車在地上蹭,那才是滑動摩擦啊……


公路車外胎細其實主要是為減輕重量,降低風阻。
以前公路車都用,19c 23c的細胎,但是試驗結果表明這些外胎阻力不一定小,所以現在主要流行25c。
國外有很多外胎阻力的試驗數據,很多都有粗外胎比細的外胎阻力還小的。
外胎的阻力有專門的研究,你可以看看。


粗的太重,騎不快。
滾阻是個偽命題,沒摩擦力咋前進。
為了增加阻力,公路車經常用連紋路都沒的光頭胎。


推薦閱讀:

如何向朋友解釋山地車后座不是載人的?
2000左右預算想買山地車,自己組裝好還是買套車好?
橢圓碟片的優勢與劣勢?
公路車爬坡的技巧有哪些?
如何評價美騎公司?

TAG:自行車 | 物理學 | 公路車 |