霍金在物理學科學家中到底有多高的地位?可以和愛因斯坦,牛頓這些人相提並論嗎?
霍金在物理學科學家中到底有多高的地位?可以和愛因斯坦,牛頓這些人相提並論嗎?
拿現代的物理學家和幾十年前甚至幾百年前的物理學家來比顯然是不合理的。
就比如牛頓的數學水平在現代來看就是微積分水平, 分析學那時都還沒出來, 不過看他的principia就知道他把古典幾何那套公理化體系玩的爐火純青, 可惜18世紀之後幾乎沒人玩古典幾何了。愛因斯坦則是略懂些黎曼幾何, 會用張量分析的工具, 陳省身大師曾強烈指責愛因斯坦數學水平不怎麼樣, 因為Einstein顯然是不懂大範圍微分幾何的, 他的場方程是局部坐標下表示的。我們再來看看霍金的數學到了什麼地步, 看過他寫的《時空的大尺度結構》(不是科普書, 樓上那些只看過《時間簡史》的可以深入閱讀)的人都知道, 霍金顯然精通微分幾何和偏微分方程,感覺如果他轉行做數學的話完全可以像丘成桐那樣做幾何分析了。 丘成桐如是說: 「他研究廣義相對論,我也從事廣義相對論的研究,我講的數學他懂,他講的物理我也懂。我去劍橋講過學,他也來過哈佛講課,書信往來就更多。」 而且看過他關於霍金輻射的文章就知道, 霍金不僅精通廣義相對論, 還精通量子場論, 所以拿一個站在巨人肩膀上的人和巨人比是不合理的。
這是史上唯一一個包含了自然界4大常數的基本公式:玻爾茲曼常數,光速,萬有引力常數,約化普朗克常數,好像牛頓的方程里只有G愛因斯坦的只有G和c吧。
而且90年代A. Strominger和C. Vafa成功的用D-brane纏繞Calabi-Yau流形的可能方式的數量成功地在弦理論中得出了Bekenstein-Hawking公式, 可謂是弦理論的一大triumph。很神奇的是, 同年C. Rovelli從圈量子引力中也得到了BH公式, 所以說這個式子在某種意義上統一了廣義相對論, 量子力學, 熱力學與統計物理, 甚至是信息學(熵的增加相當於信息的減少)。
不能
很多人也心裡清楚,這比得沒啥意思,外行才看排名。科學家這個群體中沒有「地位」,頂多有「影響力」,這個要從整個科學史的角度來看。還有,影響力大的都是牛人,但是牛人不一定影響力大,這裡面機遇很重要。
所以硬要拿他們來比,只能比他們的學術成就在整個科學史中的地位。這不是他們作為人的地位,只能說他們足夠牛掰並且強運,在合適的時間做出了有地位的工作。
————下面是有人想要的(偽)乾貨————- 牛頓把人類基礎物理水平從一個無窮趨近於0的狀態硬生生地拉到了10。都說第一步最難走,從0起步建立一套學問的基礎是最困難的工作,他不僅做到了,而且做得相當出色和完善,並且在此基礎上還前進了不少。
- 之後的幾百年,基礎物理水平大概上升到了20吧。其中貢獻比較大的有: 那些搞數學分析的,不僅嚴格化了微積分,而且把力學抽象化為分析力學,而且發展了流體力學,這裡面有歐拉、拉格朗日、哈密頓什麼的; 與工業革命相輔相成的熱力學,代表人物吉布斯、玻爾茲曼; 電磁學,代表人物法拉第、麥克斯韋。麥克斯韋的工作算是承前啟後的大作,也算是個重要人物。但總的來說,物理學的面貌沒有發生太大改變。
- 20世紀初的黃金年代,算是一口氣把物理學水平提升到了100。這裡面愛因斯坦出了至少一半的力,這就是他的水準。其它對量子力學做出主要貢獻的還有普朗克、玻爾、德布羅意、泡利、海森堡等,但貢獻非常分散。個人認為,愛因斯坦關於廣義相對論的貢獻是超越他那個時代的。從這個意義上說,他有和牛頓站在一起的資格。
- 之後的發展很迅猛,現在說達到了500的水平應該不過分,但是要說有誰有牛頓和愛因斯坦那樣的影響力,估計是沒有。排得上號的大概有狄拉克、費曼、朗道、楊振寧,還有如果以後弦論從任何意義上成功了,愛德華胃疼也是能進入這個行列的。霍金的話,是難進入這個行列的。當然,他的工作是重要的,黑洞熱力學是全息對偶理論的先驅,他的名字載入物理學史是一點問題都沒有的。
————————————————————————
以上內容僅供喜歡看排名的人參考。答主對此不負責,謝絕撕逼。
霍金對物理學的貢獻還不如楊振寧
參看果殼網對此的討論
如何評價楊振寧在物理學史上的地位?
弄科學的,咱比來比去確實沒什麼意思,真正重要的是對真理的追求。
如果非要比較的話,我估計是「不能」,因為牛頓、愛因斯坦這種類似於開山鼻祖型的人物畢竟不是你霍金這種繼承者能比得上,雖然霍金本身確實很牛很有貢獻。這也就是為什麼廟裡一般供奉釋迦摩尼而不是唐玄奘……
排第一的,恐怕還是牛頓。第二愛因斯坦。後面的都沒法比了。
楊大師在世的裡面算頂尖的之一吧。霍大師在自己的領域算頂尖的,但領域沒有其他大師廣,影響力很大程度上在於科普(也很重要)
我不知道霍金實力如何。
但是我知道學生最恨的人排名霍金一定很排後
所以,你這個問題換個方式問。
牛頓,洛倫茨,之類的科學家,學生時代的你最恨的是哪個?
那麼,公認最恨的那個,一定是最偉大的。
當代霍金是物理學家中難得公眾人物,這對宣傳物理學有一定的幫助。
但是作為身殘志堅的代表,還是有一點問題,比如當時我媽媽想讓我去上交,我給我媽媽說我不我就要學物理,
我媽說你是不是要做霍金。。整天歪個脖子坐在椅子上。
我說是的!
。。。。。
所以你看,家長對一個物理學兒子的未來擔憂是他也會跟霍金一樣殘疾,所以從這個角度上來說,我們應該多宣傳宣傳薛定諤。霍金只是一位出色的宇宙學家,他的學術活躍期在上個世紀。私以為霍金之所以家喻戶曉可以用人們被一個患上漸凍人症的研究關於宇宙學這樣宏大的問題所感動。愛因斯坦是現代物理學範式的奠基者(1905年的五篇論文),牛頓是經典物理範式的奠基者。牛頓和愛因斯坦不僅僅是在他們有生之年解決了當時的物理學問題,更是奠定從他們起人們回答問題的方式。愛因斯坦終結了牛頓時代,而愛因斯坦時代至今尚未終結。霍金只不過是在愛因斯坦創造的範式下一個極為小的領域的專家罷了。
不能。
比較客觀的評價是:
1. 霍金是一位出色的宇宙物理學家。
2. 霍金也在宇宙科學的科普方面取得了突出的成績。
3. 霍金的傳奇性經歷和他堅韌不拔的精神被人們所稱道,同時也提供了眾多傳記文學及新聞報道的題材。這也使他成為了物理界的一位公眾人物。
爲什麼牛頓的地位總是被低估,就因爲大家中學學過力學嗎?
引一個Quora的答案吧(作者是Alejandro Jenkins,鏈接:https://www.quora.com/Does-Isaac-Newton-deserve-the-praise-and-respect-hes-been-given-throughout-history/answer/Alejandro-Jenkins):
I think that, if anything, Newton"s enormous personal contribution to the establishment of modern science is under-appreciated.
It is now extremely difficult for a casual reader, even one with advanced training in mathematics and physics, to understand Newton"s great work, the Philosophi? Naturalis Principia Mathematica ("Mathematical Principles of Natural Philosophy"), first published in 1687. The great astrophysicist and Nobel laureate Subrahmanyan Chandrasekhar (1910-1995) dedicated the last five years of his life to reading thePrincipia and making it understandable to a modern professional physicist. He only managed to get through what he thought were the key bits before he died.
There are three main reasons why the Principia is so difficult to read (aside from the fact that it was written in Latin, which few people learn now). The first is that Newton presented his proofs in a geometrical ("synthetic") form, in the manner of the ancient Greeks, rather than using the algebraic ("analytic") language that is favored by modern scientists and which is much easier to systematize and to teach (especially to people who, as the Soviet mathematician V. I. Arnold complained, "don"t really understand it").
William Whewell (1794-1866) memorably commented on this aspect of Newton"s work:
Nobody since Newton has been able to use geometrical methods to the same extent for the like purposes; and as we read the Principia we feel as when we are in an ancient armoury where the weapons are of gigantic size; and as we look at them we marvel what manner of man he was who could use as a weapon what we can scarcely lift as a burden.
The second reason why the Principia is difficult to understand is that Newton hated controversies, and he deliberately wanted to keep his work technical and abstruse to "avoid being baited by little smatterers in mathematics". It is easy to blame Newton for this attitude, but if one looks carefully into the literature of the time, it is clear that Newton had to contend against intense criticism from many fronts, almost all of it misguided and some of it malicious. Even a man with a much less prickly and suspicious temperament than Newton would have balked at the prospect of straining to make his work accessible to people who were so eager to attack him.
The third reason why the Principia is hard to read is simply the incredible depth and breadth of its intellectual achievement. Newton had created a new mathematics and a new physics, and not for the purpose of solving the simple problems with pulleys and inclined planes that we teach now to students. In the Principia, Newton formulates his laws of motion and then uses the calculus, which he had invented, to derive Kepler"s laws of planetary motion from an inverse-square force law for gravity. He goes on to use the same principles to explain the motion of comets, the shape of the Earth, the tides, the precession of the equinoxes, and even the irregularities in the orbital motion of the moon (an instance of the famously difficult "three-body problem" that occupies mathematicians and physicists even now). The scope of the work on celestial mechanics in Book III of the Principia ("The System of the World") goes beyond what is taught today to an undergraduate student in physics or astronomy.
There is a mathematical result in Book I of the Principia, about the algebraic non-integrability of smooth ovals, that was not appreciated until it was re-discovered 300 years later by V. I. Arnold and others. There, Newton makes a topological argument long before topology was invented as such. (Arnold also points out that this was the first impossibility proof since the ancient Greeks.)
Vladimir Igorevich Arnold (1937-2010)
In Book II of the Principia, Newton struggled with the problem of describing the motion of bodies in resistive media (air or water), long before the nature of that resistance was adequately understood. Much of that work is now obsolete, but fluid dynamicists still deal on a daily basis with "Newtonian fluids", because Newton was the first person to define precisely the concept of viscosity.
And Newton was not only a brilliant mathematician and theoretical physicist. He was a also a first-rate experimentalist, who built the first practical reflecting telescope and demonstrated (using a glass prism) that white light is a combination of the colors of the visible spectrum. (His other and far more accessible published work was the Opticks, which appeared in 1704.) Newton also formulated a well-known empirical law for the rate at which hot bodies cool off, studied the speed of sound, and pioneered techniques of data analysis that would only come into their own many years later.
Moreover, Newton was philosophically well ahead of his time. For instance, his great rival Gottfried Leibniz (1646-1716) rejected the Newtonian theory of gravity because it did not explain how gravity acted across empty space. Newton famously replied that he did not know what gravity was, that he was only formulating a mathematical law that described its observable behavior. Richard Feynman commends the modernity of Newton"s approach in his famous lectures on The Character of Physical Law (1965).
It is true that classical mechanics is not taught today in the language in which Newton formulated it, but the ideas are very much his. Two people were principally responsible for the analytical approach to mechanics that we use now: Leonhard Euler (1707-1783) and Joseph-Louis Lagrange (1736-1813). Both of them admired Newton greatly. In fact, Lagrange was often heard to remark that Newton had been both the greatest and the most fortunate of all mortals, because one may discover the system of the world only once.
It is also true that we now know that Newtonian mechanics is not the last word on the workings of the Universe. It fails to describe both the behavior of objects traveling very fast with respect to each other (for which we need Einstein"s relativity) and the behavior of matter and radiation at very small scales (for which we need quantum mechanics). But the discovery of relativity and quantum mechanics would have been impossible without Newton"s pioneering work, which created the framework in which the exact sciences have proceeded since. (Einstein left several touching tributes to the greatness of Newton"s intellectual achievements.) Newton himself understood quite clearly (often more clearly than his followers) the scope and limitations of his work. And as long as there continue to be physics students, it seems quite likely that they will start by learning Newton"s laws of motion.Post-script: I am a physicist, so I naturally focused on Newton"s contributions to physics. But, besides sharing the credit with Leibniz for the invention of calculus, Newton made other seminal contributions to pure mathematics. He generalized the binomial theorem to non-integer exponents. He contributed enormously to the theory of power series (the "Taylor series" is more Newton"s than Taylor"s). He classified most of the cubic plane curves (in the process helping to develop the techniques of projective geometry), and he showed how to construct the conic sections with five given points or tangent lines. Also, people who work on numerical analysis are quite familiar with "Newton"s method" for approximating the roots of a real-valued function.
我們學習大學物理的時候,老師說最屌的牛頓和麥克斯韋和愛因斯坦。然後細一點地話,牛頓第一,愛因斯坦是第二,麥克斯韋是第三,第四老師沒說,後面的就不知道了。所以霍金應該很難吧,要進這個排名。
非常簡單啊。。你看從初中開始,到大學,研究生,博士生,物理書籍裡面充斥著牛頓,愛因斯坦,麥克斯韋,法拉第等等人的理論。。。可是霍金只出現在語文書中。。。
霍金主要是人生的傳奇和其過分暢銷的半科普書籍加成,使其更家喻戶曉一些
他主攻的課題又是和所謂宇宙起源能扯上些關係,所以彷彿是最高深
又因為很多他的介紹里都要經不經意地提起他現在的職位是當年牛頓干過的,你懂得人的聯想能力
大部分人現在能說出名字的物理學家基本停留在課本階段,他們時代都太遙遠了,一般熱愛一些科普的人知道的那些耳熟能詳的年代稍近的人,對他們是完全沒概念的
說白了二十世紀後期湧現出來的物理學家,誰能如數家珍?
哦,這麼說,霍金知名度高,還要感謝tbbt和謝爾頓
當然,霍金在以後編纂物理史話時肯定是繞不開的
說來也糾結,霍金的科學界研究被身體疾病桎梏,不過這個經歷使他能被更多圈外人熟知並成名,不知該說上天太無情還是塞翁失馬霍金可以說是當今最偉大的物理學家之一,但要到和牛頓、愛因斯坦以及其他一批奠定物理學基礎的人相比還是有點差距。但有時候就是這樣,行業內最頂尖的人的名氣往往不如跨界的、稍差一些的人,就像當年喬布斯這個賣電腦和手機的忽悠一個賣汽水的(當時的可口可樂公司高管):我們來改變世界吧,其實真正改變世界的人是Dennis Ritchie和Ken Thompson。
如果拿NBA的球星們類比一下,我覺得霍金應該是奧尼爾、大衛羅賓遜這個層次的,屬於最頂尖的人物之一,但是最頂尖的人物還有喬丹——其實喬丹還在仰望指環王拉塞爾
牛頓 法拉第 麥克斯韋 愛因斯坦 應該地位差不多吧
地位的話還是牛頓最高,畢竟以一己之力奠定了經典物理,愛因斯坦比牛頓低半個頭,但還是一個水平線上的,在大家大呼物理學已死的時候,他的相對論開創了一個新世紀。其他人都無法和他兩相提並論,他們都是一個王朝的建立者,其他人頂死一個裂土而封的諸侯,霍金嘛,算個士大夫吧
我認為霍金出名有部分是因為他廣泛存在中小學作文中
~
就好像雷布斯與喬布斯的區別。
霍金在科學家中的地位
大約是張海迪在作家中的地位。
推薦閱讀:
※太陽的能量大概有多大?
※如果聲速只有 1m/s,會是怎樣一副場景?
※網上流傳的神貼,想問說的都正確嗎還是有哪些不妥?
※暗物質與暗能量是什麼?是不是其他維度的物質透過引力而形成的場?
※哪種語言會成為地球語言?